Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prenat Diagn ; 39(11): 1011-1015, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31429096

RESUMO

OBJECTIVE: To evaluate clinical performance of a new automated cell-free (cf)DNA assay in maternal plasma screening for trisomies 21, 18, and 13, and to determine fetal sex. METHOD: Maternal plasma samples from 1200 singleton pregnancies were analyzed with a new non-sequencing cfDNA method, which is based on imaging and counting specific chromosome targets. Reference outcomes were determined by either cytogenetic testing, of amniotic fluid or chorionic villi, or clinical examination of neonates. RESULTS: The samples examined included 158 fetal aneuploidies. Sensitivity was 100% (112/112) for trisomy 21, 89% (32/36) for trisomy 18, and 100% (10/10) for trisomy 13. The respective specificities were 100%, 99.5%, and 99.9%. There were five first pass failures (0.4%), all in unaffected pregnancies. Sex classification was performed on 979 of the samples and 99.6% (975/979) provided a concordant result. CONCLUSION: The new automated cfDNA assay has high sensitivity and specificity for trisomies 21, 18, and 13 and accurate classification of fetal sex, while maintaining a low failure rate. The study demonstrated that cfDNA testing can be simplified and automated to reduce cost and thereby enabling wider population-based screening.


Assuntos
Teste Pré-Natal não Invasivo/métodos , Trissomia/diagnóstico , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 21 , Feminino , Humanos , Gravidez
2.
Sci Rep ; 8(1): 4549, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540801

RESUMO

Cell-free DNA analysis is becoming adopted for first line aneuploidy screening, however for most healthcare programs, cost and workflow complexity is limiting adoption of the test. We report a novel cost effective method, the Vanadis NIPT assay, designed for high precision digitally-enabled measurement of chromosomal aneuploidies in maternal plasma. Reducing NIPT assay complexity is achieved by using novel molecular probe technology that specifically label target chromosomes combined with a new readout format using a nanofilter to enrich single molecules for imaging and counting without DNA amplification, microarrays or sequencing. The primary objective of this study was to assess the Vanadis NIPT assay with respect to analytical precision and clinical feasibility. Analysis of reference DNA samples indicate that samples which are challenging to analyze with low fetal-fraction can be readily detected with a limit of detection determined at <2% fetal-fraction. In total of 286 clinical samples were analysed and 30 out of 30 pregnancies affected by trisomy 21 were classified correctly. This method has the potential to make cost effective NIPT more widely available with more women benefiting from superior detection and false positive rates.


Assuntos
Ácidos Nucleicos Livres/sangue , Síndrome de Down/diagnóstico , Diagnóstico Pré-Natal/métodos , Imagem Individual de Molécula/métodos , Aneuploidia , Estudos de Casos e Controles , Análise Custo-Benefício , Feminino , Humanos , Gravidez , Diagnóstico Pré-Natal/economia , Estudos Prospectivos , Imagem Individual de Molécula/economia
3.
Ann Clin Transl Neurol ; 1(8): 544-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25356426

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease leading to muscular paralysis and death within 3-5 years from onset. Currently, there are no reliable and sensitive markers able to substantially shorten the diagnosis delay. The objective of the study was to analyze a large number of proteins in plasma from patients with various clinical phenotypes of ALS in search for novel proteins or protein profiles that could serve as potential indicators of disease. METHODS: Affinity proteomics in the form of antibody suspension bead arrays were applied to profile plasma samples from 367 ALS patients and 101 controls. The plasma protein content was directly labeled and protein profiles obtained using 352 antibodies from the Human Protein Atlas targeting 278 proteins. A focused bead array was then built to further profile eight selected protein targets in all available samples. RESULTS: Disease-associated significant differences were observed and replicated for profiles from antibodies targeting the proteins: neurofilament medium polypeptide (NEFM), solute carrier family 25 (SLC25A20), and regulator of G-protein signaling 18 (RGS18). INTERPRETATION: Upon further validation in several independent cohorts with inclusion of a broad range of other neurological disorders as controls, the alterations of these three protein profiles in plasma could potentially provide new molecular markers of disease that contribute to the quest of understanding ALS pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...