Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 53(3): 933-42, 2016 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-27340850

RESUMO

Aluminum, being the most abundant metal in the earth's crust, is widely distributed in the environment, and is routinely taken up by the human body through ingestion and inhalation. Aluminum is not considered an essential element and it can be toxic in high concentrations. Most of the body burden of aluminum is stored in the bones. Aluminum has been postulated to be involved in the causality of Alzheimer's disease. A system for non-invasive measurement of bone aluminum using the in vivo neutron activation analysis technique has been developed and previously reported in the literature by our group. The results are reported as ratio of Al to Ca in order to eliminate the variations in beam parameters and geometry as well as the physical variations among the subjects such as size of the hand and bone structure. This pilot study included 30 subjects, 15 diagnosed with Alzheimer's disease in mild and moderate stages and 15 control subjects, all of whom were 60 years of age or older. The mean value of aluminum for the control group was 2.7±8.2µg Al/g Ca (inverse-variance weighted mean 3.5±0.9µg Al/g Ca) and for the Alzheimer's disease subjects was 12.5±13.1µg Al/g Ca (inverse-variance weighted mean 7.6±0.6µg Al/g Ca). The difference between the mean of the Alzheimer's disease group and the mean of the control group was 9.8±15.9µg Al/g Ca, with a p-value of 0.02. An age-dependent linear increase in bone aluminum concentration was observed for all subjects. The difference in serum aluminum levels between the two groups did not reach significance.


Assuntos
Alumínio/análise , Doença de Alzheimer/patologia , Osso e Ossos/química , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Ativação de Nêutrons/métodos , Projetos Piloto , Escalas de Graduação Psiquiátrica , Espectrometria gama
2.
J Alzheimers Dis ; 50(4): 913-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890739

RESUMO

Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades.


Assuntos
Alumínio/análise , Análise de Ativação de Nêutrons/métodos , Doença de Alzheimer/metabolismo , Humanos , Análise de Ativação de Nêutrons/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA