Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 23(7): 202, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28620813

RESUMO

The enzyme amorphadiene synthase (ADS) conducts the first committed step in the biosynthetic conversion of the substrate farnesyl pyrophosphate (FPP) to artemisinin, which is a highly effective natural product against multidrug-resistant strains of malaria. Due to the either low abundance or low turn-over rate of the enzyme, obtaining artemisinin from both natural and synthetic sources is costly and laborious. In this in silico study, we strived to elucidate the substrate binding site specificities of the ADS, with the rational that unraveling enzyme features paves the way for enzyme engineering to increase synthesis rate. A homology model of the ADS from Artemisia annua L. was constructed based on the available crystal structure of the 5-epiaristolochene synthase (TEAS) and further analyzed with molecular dynamic simulations to determine residues forming the substrate recognition pocket. We also investigated the structural aspects of Mg2+ binding. Results revealed DDYTD and NDLMT as metal-binding motifs in the putative active site gorge, which is composed of the D and H helixes and one loop region (aa519-532). Moreover, several representative residues including Tyr519, Asp444, Trp271, Asn443, Thr399, Arg262, Val292, Gly400 and Leu405, determine the FPP binding mode and its fate in terms of stereochemistry as well as the enzyme fidelity for the specific end product. These findings lead to inferences concerning key components of the ADS catalytic cavity, and provide evidence for the spatial localization of the FPP and Mg2+. Such detailed understanding will probably help to design an improved enzyme.


Assuntos
Alquil e Aril Transferases/química , Artemisia annua/enzimologia , Artemisininas/química , Simulação por Computador , Lactonas/química , Modelos Moleculares , Proteínas de Plantas/química , Alinhamento de Sequência , Homologia Estrutural de Proteína
2.
Mol Biol Rep ; 40(7): 4421-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23652998

RESUMO

Developing a reliable technique to transform unicellular green algae, Chlorella vulgaris, could boost potentials of using microalgae feedstock in variety of applications such as biodiesel production. Volumetric lipid productivity (VLP) is a suitable variable for evaluating potential of algal species. In the present study, the highest VLP level was recorded for C. vulgaris (79.08 mg l(-1 )day(-1)) followed by 3 other strains studied; C. emersonii, C. protothecoides, and C. salina by 54.41, 45 and 18.22 mg l(-1)day(-1), respectively. Having considered the high productivity of C. vulgaris, it was selected for the preliminary transformation experiment through micro-particle bombardment. Plasmid pBI 121, bearing the reporter gene under the control of CaMV 35S promoter and the kanamycin marker gene, was used in cells bombardment. Primary selection was done on a medium supplemented by 50 mg l(-1) kanamycin. After several passages, the survived cells were PCR-tested to confirm the stability of transformation and then were found to exhibit ß-glucuronidase (GUS) activity in comparison with the control cells. Southern hybridization of npt II probe with genomic DNA revealed stable integration of the cassette in three different positions in the genome. The whole process was successfully implemented as a pre-step to transform the algal cells by genes involved in lipid production pathway which will be carried out in our future studies.


Assuntos
Biocombustíveis , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Biotransformação , Chlorella vulgaris/efeitos dos fármacos , Ativação Enzimática , Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Canamicina/farmacologia , Metabolismo dos Lipídeos , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...