Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896534

RESUMO

Power line inspection is one important task performed by electricity distribution network operators worldwide. It is part of the equipment maintenance for such companies and forms a crucial procedure since it can provide diagnostics and prognostics about the condition of the power line network. Furthermore, it helps with effective decision making in the case of fault detection. Nowadays, the inspection of power lines is performed either using human operators that scan the network on foot and search for obvious faults, or using unmanned aerial vehicles (UAVs) and/or helicopters equipped with camera sensors capable of recording videos of the power line network equipment, which are then inspected by human operators offline. In this study, we propose an autonomous, intelligent inspection system for power lines, which is equipped with camera sensors operating in the visual (Red-Green-Blue (RGB) imaging) and infrared (thermal imaging) spectrums, capable of providing real-time alerts about the condition of power lines. The very first step in power line monitoring is identifying and segmenting them from the background, which constitutes the principal goal of the presented study. The identification of power lines is accomplished through an innovative hybrid approach that combines RGB and thermal data-processing methods under a custom-made drone platform, providing an automated tool for in situ analyses not only in offline mode. In this direction, the human operator role is limited to the flight-planning and control operations of the UAV. The benefits of using such an intelligent UAV system are many, mostly related to the timely and accurate detection of possible faults, along with the side benefits of personnel safety and reduced operational costs.

2.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616606

RESUMO

Multiclass image classification is a complex task that has been thoroughly investigated in the past. Decomposition-based strategies are commonly employed to address it. Typically, these methods divide the original problem into smaller, potentially simpler problems, allowing the application of numerous well-established learning algorithms that may not apply directly to the original task. This work focuses on the efficiency of decomposition-based methods and proposes several improvements to the meta-learning level. In this paper, four methods for optimizing the ensemble phase of multiclass classification are introduced. The first demonstrates that employing a mixture of experts scheme can drastically reduce the number of operations in the training phase by eliminating redundant learning processes in decomposition-based techniques for multiclass problems. The second technique for combining learner-based outcomes relies on Bayes' theorem. Combining the Bayes rule with arbitrary decompositions reduces training complexity relative to the number of classifiers even further. Two additional methods are also proposed for increasing the final classification accuracy by decomposing the initial task into smaller ones and ensembling the output of the base learners along with that of a multiclass classifier. Finally, the proposed novel meta-learning techniques are evaluated on four distinct datasets of varying classification difficulty. In every case, the proposed methods present a substantial accuracy improvement over existing traditional image classification techniques.


Assuntos
Algoritmos , Teorema de Bayes
3.
Stud Health Technol Inform ; 281: 362-366, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042766

RESUMO

eMass project aims to digitalize the medical examination procedure of recruitment phase of conscripts in the Hellenic Navy. eMass integrates recruits' Electronic Health Record (EHR), while allows a pre-screening test, through portable telemedicine equipment. The data will be exploited to assess the individual's cardiovascular risk through appropriate digital tools and algorithms. The eMass digital platform, will be accessible to health experts involved in the recruitment procedure for further assessment and processing. Recruits' personal data is stored in the database encrypted using Advanced Encryption Standard (AES). eMass solution contributes to beneficial management and medical data analysis, preventing inessential physical or medical examinations minimizing danger of possible errors and reducing time-consuming processes. Moreover, eMass exploits Electronic Health Record data through a machine-learning based cardiovascular risk assessment tool.


Assuntos
Registros Eletrônicos de Saúde , Telemedicina , Algoritmos , Gerenciamento de Dados , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...