Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 42(3): 539-542, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146522

RESUMO

Segmented strip-loaded waveguide arrays are investigated within a rigorous square lattice photonic crystal model. We derive a full multiband discrete diffraction approach for near-axial injection in the direction of a lattice vector. We obtain an effective waveguide array picture, with quasi-linear dependence on the segmentation ratio in a simplified single-band scheme. Our results are validated by beam deviation experiments. Such a diffraction framework allows for efficient shaping of the phase map in waveguide arrays and enriches the engineering toolkit of photonic crystals with the in-plane free propagation structures of discrete photonics.

2.
Opt Lett ; 34(16): 2462-4, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684816

RESUMO

In homogeneous arrays of coupled waveguides, Floquet-Bloch waves are known to travel freely across the waveguides. We introduce a systematic discussion of the built-in patterning of the coupling constant between neighboring waveguides. Key patterns provide functions such as redirecting, guiding, and focusing these waves, up to nonlinear all-optical routing. This opens the way to light control in a functionalized discrete space, i.e., discrete photonics.

3.
Opt Express ; 13(4): 1193-201, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19494989

RESUMO

We evaluate the trefoil channels present between the holes of microstructured fibers as a potential dense array of small waveguides. In channels with an inner radius of 330nm, calculations indicate possible propagation with a mode waist of ~350nm at lambda=670nm, near to the diffraction limit. Actual measurements have been performed on a 1-meter fiber section, with injection by a microlensed fiber and mapping of output by near-field scanning optical microscopy. They show that light can be output in individual channels or in several of them, depending on the injection. The observed waist is ~500nm, possibly due to experimental widening. Estimated propagation losses are <20dB/m. Since each channel occupies only 2microm2, this structure opens a way to dense parallel optical processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...