Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115619

RESUMO

This study aimed to determine the efficacy of a bacterial 6-phytase (Buttiauxella spp.) supplemented beyond traditional dose levels based on jejunal mucosa-associated microbiota, apparent ileal digestibility (AID), intestinal health and bone parameters, and growth performance of nursery pigs. Seventy-two weaned pigs (36 barrows and 36 gilts at 21 d of age with 5.8 ± 0.5 kg BW) were allotted to six treatments based on randomized complete block design with sex and initial BW as blocks and fed in three dietary phases (phase 1 for 14 d, phase 2 for 10 d, and phase 3 for 14 d). The treatments included a negative control (NC) diet without phytase formulated meeting nutrient requirements by NRC and the other five treatments were deficient in calcium (Ca) and phosphorus (P) by 0.12% with increasing levels of a bacterial 6-phytase (0, 500, 1,000, 2,000, and 5,000 FTU/kg feed). Titanium dioxide (0.4%) was added to phase 3 diets as an indigestible marker to measure AID of nutrients. On day 45, all pigs were euthanized to collect ileal digesta to measure AID, the third metacarpus to measure bone parameters, and jejunal mucosa to evaluate intestinal health and microbiota. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis using the SAS 9.4. Broken line analysis demonstrated that 948 FTU/kg feed increased (P < 0.05) the ADG and the bone P content. Increasing phytase supplementation increased (linear, P < 0.05) AID of CP, bone P, and ash content. Increasing phytase supplementation reduced (P < 0.05) the fecal score during phases 2 and 3. Broken line analysis demonstrated that 1,889 FTU/kg feed increased (P < 0.05) bone breaking strength. Increasing phytase supplementation (PC vs. Phy) increased (P < 0.05) AID of ether extract (EE) and P. The supplementation of phytase at 2,000 FTU/kg feed tended (P = 0.087) to reduce the relative abundance of Prevotellaceae. In conclusion, the supplementation of a bacterial 6-phytase beyond traditional dose levels improved bone breaking strength, bone ash, and P content, AID of CP, EE, and P, and growth performance of nursery pigs with reduced relative abundance of Bacteroidetes specifically Prevotellaceae in the jejunal mucosa. Supplementation of a bacterial 6-phytase between 1,000 and 2,000 FTU/kg feed provided benefits associated with growth performance and bone parameters of nursery pigs.


After weaning, pigs start to receive solid diets throughout nursery phase with high amounts of plant-based feedstuffs containing various antinutritional and allergenic compounds. Feed enzymes have been used in nursery diets to reduce or remove the negative impacts associated with these compounds. This study used the phytase at normal and beyond traditional doses, which specifically catalyze the hydrolysis of phytic acid and can provide benefits on bone and intestinal health, intestinal microbiota, nutrient digestibility, and growth performance of pigs. The aim of this study was to investigate the efficacy of a bacterial 6-phytase beyond traditional dose levels on intestinal microbiota, nutrient digestibility, bone parameters and intestinal health, and growth performance of nursery pigs. Phytase supplementation improved bone breaking strength and mineralization, apparent ileal digestibility of crude protein, ether extract, and phosphorus, average daily gain, feed intake, and reduced relative abundance of Bacteroidetes specifically Prevotellaceae in the jejunal mucosa.


Assuntos
6-Fitase , Suínos , Animais , Feminino , 6-Fitase/farmacologia , Digestão , Suplementos Nutricionais/análise , Dieta/veterinária , Mucosa Intestinal , Nutrientes , Ração Animal/análise
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715157

RESUMO

The objective of this study was to investigate effects of zinc glycinate (ZnGly) supplementation reducing zinc oxide (ZnO) in feeds on intestinal health and growth of nursery pigs challenged with F18+Escherichia coli (E. coli). In total, 72 nursery pigs (BW 6.5 ± 0.5 kg) were allotted in a randomized complete block design to nine treatments: (1) NC: no challenge/no supplement; (2) PC: E. coli challenge/no-supplement; (3) E. coli challenge/ZnO at 2,500 mg/kg; (4, 5, and 6) E. coli challenge/ZnGly at 400, 800, and 1,200 mg/kg; and (7, 8, and 9) E. coli challenge/ZnGly at 400 mg/kg and ZnO at 700, 1,400, and 2,357 mg/kg. Pigs were fed for 28 d based on two phases (phase 1: 14 d and phase 2: 14 d). On day 7, challenged groups were orally inoculated with F18+E. coli at 6 × 109 CFU/mL whereas NC received saline solution. The PC showed reduced ADG (P = 0.076) and G:F (P = 0.055) during phase 1 and increased fecal score (P < 0.05) during the first week of postchallenge when compared with NC, whereas supplementation of ZnGly from 0 to 1,200 mg/kg linearly increased (P = 0.092) G:F and decreased (P < 0.05) the fecal score of the pigs challenged with F18+E. coli. Supplementation of ZnGly from 0 to 1,200 mg/kg had quadratic effects on TNF-α (P = 0.065; minimum 1.13 pg/mg at 850 mg/kg ZnGly), IL-8 (P = 0.093; minimum 0.53 ng/mg at 494 mg/kg), and protein carbonyl (P = 0.054; minimum 2.30 pg/mg at 675 mg/kg) and linearly increased mRNA expressions of ZIP4 (P = 0.057) and ZnT5 (P = 0.075) in the jejunum of the pigs. Supplementation of ZnGly from 0 to 1,200 mg/kg linearly increased (P < 0.05) the relative abundance of Actinobacteria and had quadratic effects on Cyanobacteria (minimum 0.67% at 625 mg/kg ZnO) and Proteobacteria (maximum 45.6 g/d at 735 mg/kg) at the phylum level, with linearly decreased (P < 0.05) Enterobacteriaceae at the family level in the jejunal mucosa-associated microbiota of the pigs. There was no difference in growth performance during the overall period, although pigs fed with ZnO at 2,500 mg/kg had greater (P < 0.05) ADG than pigs fed with ZnGly at 400 mg/kg during the first week of the post challenge period. In conclusion, ZnGly could be an alternative to the pharmaceutical use of ZnO without negatively affecting the growth of nursery pigs by enhancing intestinal Zn absorption, reducing intestinal inflammation and oxidative stress, and providing positive changes in jejunal mucosa-associated microbiota.


Enterotoxigenic Escherichia coli (E. coli) strains such as F18+ and F4+E. coli are prominent harmful bacteria that cause impaired intestinal health to nursery pigs with postweaning diarrhea, leading to significant economic losses in the swine industry. In previous years, swine producers used excessively high levels of zinc oxide (ZnO) in feeds for therapeutic purpose as a growth promoter with diarrhea prevention. However, the pharmaceutical use of ZnO is prohibited by the legislation of several countries due to potential health and environmental concerns. Considering the biological functions of zinc (Zn) and the biological efficacy of the organic mineral, zinc glycinate (ZnGly) could effectively enhance the intestinal health of nursery pigs, leading to a decrease in the use of ZnO in feeds. This study aimed to investigate the effects of ZnGly supplementation, allowing the reduced use of ZnO for growth performance and intestinal health of nursery pigs challenged with F18+E. coli. Supplementation of ZnGly at a range of 400 to 675 mg/kg would reduce the negative impacts of F18+E. coli by reducing intestinal inflammation and oxidative stress with positive changes in jejunal microbiota, leading to improved growth performance and reduced diarrhea. In particular, ZnGly supplementation at 400 mg/kg could effectively reduce the use of ZnO in nursery feeds by having similar effects to the pharmaceutical use of ZnO.


Assuntos
Infecções por Escherichia coli , Doenças dos Suínos , Óxido de Zinco , Suínos , Animais , Escherichia coli , Óxido de Zinco/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Intestinos , Ração Animal/análise , Dieta/veterinária , Desmame , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
3.
Animals (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36496844

RESUMO

This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.

4.
J Anim Sci ; 100(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404463

RESUMO

This study was conducted to investigate the functional roles of an endo-ß-1,4-xylanase on the intestinal health and growth performance of nursery pigs. A total of 60 pigs (21 d old, 6.9 ± 0.8 kg body weight [BW]) were allotted based on a randomized complete block design with sex and initial BW as blocks. Dietary treatments had nutrients meeting the requirements with increasing levels of endo-ß-1,4-xylanase (0, 220, 440, 880, 1,760 xylanase unit [XU] per kg feed) and fed to pigs in three phases (phases 1, 2, and 3 for 10, 14, and 14 d, respectively). Titanium dioxide (0.4%) was added to the phase 3 diets as an indigestible marker. On day 38, all pigs were euthanized to collect ileal digesta to measure apparent ileal digestibility (AID), jejunal digesta to measure viscosity, and jejunal mucosa to evaluate intestinal health. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis of SAS. Increasing xylanase in the nursery diets reduced (linear, P < 0.05) the digesta viscosity in the jejunum. Increasing xylanase tended to reduce the relative abundance of Cupriavidus (P = 0.073) and Megasphaera (P = 0.063); tended to increase the relative abundance of Succinivibrio (P = 0.076) and Pseudomonas (P = 0.060); and had a quadratic effect (P < 0.05) on the relative abundance of Acinetobacter (maximum: 2.01% at 867 XU per kg feed). Xylanase from 0 to 1,087 XU per kg feed reduced (P < 0.05) jejunal malondialdehyde. Xylanase from 0 to 1,475 XU per kg feed increased (P < 0.05) the AID of neutral detergent fiber. Increasing xylanase increased (P < 0.05) the AID of ether extract and tended to increase (P = 0.058) the AID of crude protein. Increasing xylanase did not affect growth performance on overall period, whereas xylanase from 0 to 736 XU per kg feed increased (P < 0.05) average daily gain (ADG) during days 31 to 38. In conclusion, xylanase supplementation showed benefits on intestinal health by reducing digesta viscosity, the relative abundance of potentially harmful bacteria, and the oxidative stress in the jejunal mucosa, collectively enhancing intestinal morphology and the AID of nutrients. Xylanase supplementation at a range of 750 to 1,500 XU per kg feed provided benefits associated with reduced oxidative stress, increased nutrient digestibility, resulting in potential improvement on growth performance of nursery pigs by increasing the average daily feed intake and moderately improving the ADG throughout the last week of feeding.


Cereal grains and by-products from cereal processing are extensively used in diets for pigs. These feedstuffs contain soluble fiber that makes digesta viscous in the small intestine. Increased digesta viscosity interferes with the digestion process, changes the ecosystem of bacteria on the mucosal lining of the small intestine, and impairs the intestinal health of young pigs. Supplemental enzymes targeting soluble fiber have been used in feeding young pigs in order to remove the negative impacts of soluble fiber on nutrient utilization and intestinal health. This study used the enzyme xylanase that specifically targets xylan and arabinoxylan largely present in corn and corn by-products. The aim of this study was to investigate how effectively this xylanase work in the small intestine of young pigs by reducing digesta viscosity, positively modulating the bacterial ecosystem on the mucosal lining of the small intestine, improving intestinal health, nutrient digestibility, and finally supporting growth. Xylanase supplementation to feeds for nursery pigs showed benefits on intestinal health by reducing digesta viscosity, oxidative stress, and potentially harmful bacteria in the jejunal mucosa, collectively enhancing intestinal morphology and nutrient digestibility.


Assuntos
Ração Animal , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Mucosa Intestinal , Jejuno , Suínos , Viscosidade
5.
Animals (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944129

RESUMO

This study aimed to determine supplemental effects of phytase on modulation of the mucosa-associated microbiota in the jejunum, intestinal morphology, nutrient digestibility, bone parameters, and growth performance of broiler chickens. Three hundred and sixty newly hatched broiler chickens (Ross 308) (44 ± 2 g BW) were randomly allotted in 6 treatments with 10 birds per cage based on a completely randomized design and fed for 27 d. The treatments consisted of one negative control (NC), diet formulated meeting the requirements suggested by Ross recommendations (2019), and without phytase supplementation. The other treatments consisted of a positive control diet (PC) formulated with 0.15% deficient Ca and P and split into 5 treatments with different phytase inclusion levels (0, 500, 1000, 2000, 4000 FTU/kg feed). Titanium dioxide (0.4%) was added to feeds as an indigestible marker to measure apparent ileal digestibility (AID) of nutrients. On d 27, 3 birds were randomly selected from each cage and euthanized to collect samples for analyzing the mucosa-associated microbiota in the jejunum, oxidative stress status, AID, and bone parameters. Data were analyzed using the proc Mixed of SAS 9.4. Phytase supplementation tended to have a quadratic effect (p = 0.078) on the overall ADG (maximum: 41 g/d at 2833 FTU/kg of feed). Supplementation of phytase at 2,000 FTU/kg increased (p < 0.05) the relative abundance of Lactobacillus and reduced (p < 0.05) Pelomonas. Moreover, it tended to reduce Helicobacter (p = 0.085), Pseudomonas (p = 0.090) Sphingomonas (p = 0.071). Phytase supplementation increased (p < 0.05) the villus height and the AID of CP; and tended to increase (p = 0.086) the AID of P. Phytase supplementation increased (p < 0.05) breaking strength and P content in the tibia. In conclusion, phytase supplementation showed potential benefits on the modulation of the mucosa-associated microbiota in the jejunum by tending to reduce harmful bacteria (Pelomonas, Helicobacter, and Pseudomonas) and increase beneficial bacteria (Lactobacillus). In addition, it showed positive effects increasing apparent ileal digestibility of CP and P, enhancing intestinal morphology (villus height), and improving the bone parameters (bone breaking strength, ash, and P content). Phytase supplementation at a range of 38 to 59 FTU/d or 600 to 950 FTU/kg of feed provided the most benefits related to nutrient digestibility.

6.
Animals (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071448

RESUMO

This study aimed to investigate the effects of functional oils on modulation of mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Forty newly weaned pigs (20 barrows and 20 gilts) with 7.0 ± 0.5 kg body weight (BW) were housed individually and randomly allotted in a randomized complete block design with sex and initial BW as blocks. The dietary treatments were a basal diet with increasing levels (0.00, 0.50, 0.75, 1.00, and 1.50 g/kg feed) of functional oils (a blend of castor oil and cashew nutshell liquid; Oligo Basics USA LLC, Cary, NC) fed to pigs for 34 days divided in two phases (P1 for 13 days and P2 for 21 days). Growth performance was analyzed weekly. On day 34, all pigs were euthanized to collect jejunal mucosa for analyzing the mucosa-associated microbiota and intestinal health, and ileal digesta for analyzing apparent ileal digestibility. Data were analyzed using SAS 9.4. Supplementation of functional oils did not affect the overall growth performance. Increasing supplementation of functional oils reduced (p < 0.05) the relative abundance of Helicobacteraceae, whereas it increased (p < 0.05) Lactobacillus kitasatonis. Supplementation of functional oils tended (p = 0.064) to decrease protein carbonyl and increase the villus height (p = 0.098) and crypt depth (p = 0.070). In conclusion, supplementation of functional oils enhanced intestinal health of nursery pigs by increasing beneficial and reducing harmful bacteria, potentially reducing oxidative stress and enhancing intestinal morphology, without affecting overall growth performance of pigs. Supplementation of functional oils at 0.75-1.50 g/kg feed was the most beneficial to the jejunal mucosa-associated microbiota and intestinal integrity of nursery pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...