Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20027, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414668

RESUMO

Immunotherapy has a number of advantages over traditional anti-tumor therapy but can cause severe adverse reactions due to an overactive immune system. In contrast, a novel metabolic treatment approach can induce metabolic vulnerability through multiple cancer cell targets. Here, we show a therapeutic effect by inducing nucleotide imbalance and apoptosis in triple negative breast cancer cells (TNBC), by treating with cytosolic thymidylate 5'-phosphohydrolase (CT). We show that a sustained consumption of dTMP by CT could induce dNTP imbalance, leading to apoptosis as tricarboxylic acid cycle intermediates were depleted to mitigate this imbalance. These cytotoxic effects appeared to be different, depending on substrate specificity of the 5' nucleotide or metabolic dependency of the cancer cell lines. Using representative TNBC cell lines, we reveal how the TNBC cells were affected by CT-transfection through extracellular acidification rate (ECAR)/oxygen consumption rate (OCR) analysis and differential transcription/expression levels. We suggest a novel approach for treating refractory TNBC by an mRNA drug that can exploit metabolic dependencies to exacerbate cell metabolic vulnerability.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Timidina Monofosfato , Linhagem Celular Tumoral , Apoptose , Monoéster Fosfórico Hidrolases
2.
Anticancer Agents Med Chem ; 17(12): 1689-1697, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270071

RESUMO

BACKGROUND: Cell migration is an essential process for survival and differentiation of mammalian cells. Numerous diseases are induced or influenced by inappropriate regulation of cell migration, which plays a key role in cancer cell metastasis. In fact, very few anti-metastasis drugs are available on the market. SphKs are enzymes that convert sphingosine to sphingosine-1-phosphate (S1P) and are known to control various cellular functions, including migration of cells. In human, SphK2 is known to promote apoptosis, suppresses cell growth, and controls cell migration; in addition, the specific ablation of SphK2 activity was reported to inhibit cancer cell metastasis. OBJECTIVE: The previously identified SG12 and SG14 are synthetic analogs of sphingoid and can specifically inhibit the functions of SphK2. We investigated the effects of the SphK2 specific inhibitors on the migratory behavior of cells. METHOD: We investigated how SG12 and SG14 affect cell migration by monitoring both cumulative and individual cell migration behavior using HeLa cells. RESULTS: SG12 and SG14 mutually showed stronger inhibitory effects with less cytotoxicity compared with a general SphK inhibitor, N,N-dimethylsphingosine (DMS). The mechanistic aspects of specific SphK2 inhibition were studied by examining actin filamentation and the expression levels of motility-related genes. CONCLUSION: The data revealed that SG12 and SG14 resemble DMS in decreasing overall cell motility, but differ in that they differentially affect motility parameters and motility-related signal transduction pathways and therefore actin polymerization, which are not altered by DMS. Our findings show that SphK2 inhibitors are putative candidates for anti-metastatic drugs.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Esfingosina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Células HeLa , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...