Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906847

RESUMO

AIM: Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS: We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/ß-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS: In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Temperatura Alta , Recombinases Rec A , Esporos Bacterianos , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Bacillus subtilis/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calefação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
Mar Biotechnol (NY) ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700616

RESUMO

Environmental pollution is a significant problem due to the improper disposal of plastics and shrimp shells outdoors. Therefore, the synthesis of biodegradable film from waste materials is highly important. The novelty of this research lies in the extraction of protein hydrolysates and chitosan from shrimp shells, as well as the fabrication of biodegradable film from these materials. In this study, the composite films were produced using the solution casting method. Moreover, the combined effect of ultrasound pretreatments (UPT) and natural deep eutectic solvents (NADES) was investigated as extraction media, to determine their potential impact on shrimp waste subcritical water hydrolysis (SWH). Shrimp shells were submitted to UPT in NADES solution, followed by SWH at different temperatures ranging from 150 to 230 °C under 3 MPa for 20 min. Then, the physiochemical properties and bioactivities of the hydrolysates were assessed to determine their suitability for use in biodegradable packaging films. Additionally, the physiochemical properties and bioactivities of the resulting hydrolysates were also analyzed. The highest amount of protein (391.96 ± 0.48 mg BSA/g) was obtained at 190 °C/UPT/NADES, and the average molecular size of the protein molecules was less than 1000 Da with different kinds of peptide. Overall, combined UPT and SWH treatments yielded higher antioxidant activity levels than individual treatments. Finally, the application of composite films was evaluated by wrapping fish samples and assessing their lipid oxidation. The use of higher concentrations of protein hydrolysates significantly delayed changes in the samples, thereby demonstrating the film's applicability.

3.
Foods ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685230

RESUMO

Efficient detection methods must be developed for 1,4-dioxane due to its suspected status as a human carcinogen, which is highly mobile in food and environmental resources. In this regard, this experiment has been conducted to develop reliable and selective detection and measurement methods by using static headspace (SH) isolation, followed by gas chromatography-mass spectrometry (GC-MS). A new method was developed for determining the spiked 1,4-dioxane contents in a polyethylene glycol 600 (PEG 600). The optimal condition for SH-GC-MS was discussed. The representative ions of 1,4-dioxane and 1,4-dioxane-d8 in the SIM mode of MS are 88 and 96, respectively, and the peaks of the SIM mode were separated and confirmed. The linear range for the method covers 0.25 to 100 mg/L with a coefficient of determination (R2) ≥ 0.999. The method applicability was demonstrated by spike recovery across a variety of food additives (i.e., chlorine bitartrate, choline chloride, polysorbate 20 and 60, and PEG 1000). All spike recovery from the tested samples was in the range of 89.50-102.68% with a precision of 0.44-11.22%. These findings suggest a new analytical method for food safety inspection, and could be applicable for ensuring the safety of foods and environmental and public health on a broad scale.

4.
Biotechnol Bioeng ; 119(6): 1556-1566, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35141878

RESUMO

Escherichia coli O157:H7 have previously been associated with disease outbreaks associated with leafy green vegetables. However, the physical mechanisms that determine the spatial organization of bacteria onto leafy greens are still not clear. Microfluidics with embedded trichome-mimicking microposts were employed to investigate the role of shear flow and configuration of trichomes on E. coli O157:H7 microcolonization. We characterized the three-dimensional microcolonization of green fluorescent protein (GFP)-tagged E. coli O157:H7 using multiphoton fluorescence microscopy and compared their differences under static (no flow; incubated for 36 h at 37°C) and fluid shear conditions (750 nl/min for 36 h at 37°C). For micropatterned trichome arrays, we demonstrated that natural wax-mixed polydimethylsiloxane retains similar topographies and contact angles to the surface of trichome-bearing leafy greens. Our results showed that E. coli O157:H7 under fluid shear stress aligned their colonization parallel to the direction of flow. In a static condition, their colonization had no preferential alignment, with statistically similar angular distributions in all directions. In addition, depending on dimensions of the trichome arrays and flow conditions, different bacterial microcolonization patterns grew radially from initial attachment; they formed into filamentous structures and developed into bridges by surface hydrophobicity and flow-induced shear with a nutrient-rich medium. Collectively, these results demonstrate how the consequences of bacterial colonization in response to shear flow can affect pathogenic bacterial contamination of leafy greens and biofilm architectures.


Assuntos
Escherichia coli O157 , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Microfluídica , Folhas de Planta , Tricomas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...