Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(11): 840, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171300

RESUMO

Land use regression (LUR) models are one of the standard methods for estimating air pollution concentration in urban areas. These models are usually low accurate due to inappropriate stochastic models (weight matrix). Furthermore, the measurement or modeling of dependent and independent variables used in LUR models is affected by various errors, which indicates the need to use an efficient stochastic and functional model to achieve the best estimation. This study proposes a locally weighted total least-squares variance component estimation (LW-TLS-VCE) for modeling urban air pollution. In the proposed method, in the first step, a locally weighted total least-squares (LW-TLS) regression is developed to simultaneously considers the non-stationary effects and errors of dependent and independent variables. In the second step, the variance components of the stochastic model are estimated to achieve the best linear unbiased estimation of unknowns. The efficiency of the proposed method is evaluated by modeling PM2.5 concentrations via meteorological, land use, and traffic variables in Isfahan, Iran. The benefits provided by the proposed method, including considering non-stationary effects and random errors of all variables, besides estimating the actual variance of observations, are evaluated by comparing four consecutive methods. The obtained results demonstrate that using a suitable stochastic and functional model will significantly increase the proposed method's efficiency in PM2.5 modeling.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Análise dos Mínimos Quadrados , Material Particulado/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-34281053

RESUMO

Land use regression (LUR) models are used for high-resolution air pollution assessment. These models use independent parameters based on an assumption that these parameters are accurate and invariable; however, they are observational parameters derived from measurements or modeling. Therefore, the parameters are commonly inaccurate, with nonstationary effects and variable characteristics. In this study, we propose a geographically weighted total least squares regression (GWTLSR) to model air pollution under various traffic, land use, and meteorological parameters. To improve performance, the proposed model considers the dependent and independent variables as observational parameters. The GWTLSR applies weighted total least squares in order to take into account the variable characteristics and inaccuracies of observational parameters. Moreover, the proposed model considers the nonstationary effects of parameters through geographically weighted regression (GWR). We examine the proposed model's capabilities for predicting daily PM2.5 concentration in Isfahan, Iran. Isfahan is a city with severe air pollution that suffers from insufficient data for modeling air pollution with conventional LUR techniques. The advantages of the model features, including consideration of the variable characteristics and inaccuracies of predictors, are precisely evaluated by comparing the GWTLSR model with ordinary least squares (OLS) and GWR models. The R2 values estimated by the GWTLSR model during the spring and autumn are 0.84 and 0.91, respectively. The corresponding average R2 values estimated by the OLS model during the spring and autumn are 0.74 and 0.69, respectively, and the R2 values estimated by the GWR model are 0.76 and 0.70, respectively. The results demonstrate that the proposed functional model efficiently described the physical nature of the relationships among air pollutants and independent variables.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Irã (Geográfico) , Análise dos Mínimos Quadrados , Material Particulado/análise , Regressão Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...