Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000426

RESUMO

Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.


Assuntos
Eletrólise , Fígado , Ratos Wistar , Tendinopatia , Animais , Eletrólise/métodos , Ratos , Tendinopatia/metabolismo , Tendinopatia/terapia , Tendinopatia/etiologia , Tendinopatia/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metabolismo dos Lipídeos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Modelos Animais de Doenças
2.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806065

RESUMO

Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL-1, 109.8 µg·mL-1 and 45.7 µg·mL-1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.


Assuntos
Chaperonina 60/metabolismo , Olea , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose , Humanos , Inflamação/tratamento farmacológico , Camundongos , Álcool Feniletílico/análogos & derivados , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
3.
Molecules ; 27(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408740

RESUMO

There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.


Assuntos
Anti-Infecciosos , Antineoplásicos , Olea , Triterpenos , Animais , Antocianinas/análise , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Antineoplásicos/análise , Antioxidantes/química , Suplementos Nutricionais , Frutas/química , Olea/química , Azeite de Oliva/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Polifenóis/química , Triterpenos/análise , Triterpenos/farmacologia , Verduras
4.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899159

RESUMO

Maslinic acid (MA) is a natural triterpene from Olea europaea L. with multiple biological properties. The aim of the present study was to examine MA's effect on cell viability (by the MTT assay), reactive oxygen species (ROS levels, by flow cytometry) and key antioxidant enzyme activities (by spectrophotometry) in murine skin melanoma (B16F10) cells compared to those on healthy cells (A10). MA induced cytotoxic effects in cancer cells (IC50 42 µM), whereas no effect was found in A10 cells treated with MA (up to 210 µM). In order to produce a stress situation in cells, 0.15 mM H2O2 was added. Under stressful conditions, MA protected both cell lines against oxidative damage, decreasing intracellular ROS, which were higher in B16F10 than in A10 cells. The treatment with H2O2 and without MA produced different responses in antioxidant enzyme activities depending on the cell line. In A10 cells, all the enzymes were up-regulated, but in B16F10 cells, only superoxide dismutase, glutathione S-transferase and glutathione peroxidase increased their activities. MA restored the enzyme activities to levels similar to those in the control group in both cell lines, highlighting that in A10 cells, the highest MA doses induced values lower than control. Overall, these findings demonstrate the great antioxidant capacity of MA.


Assuntos
Antioxidantes/farmacologia , Embrião de Mamíferos/citologia , Peróxido de Hidrogênio/toxicidade , Melanoma Experimental/patologia , Triterpenos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Ratos , Triterpenos/química
5.
Phytomedicine ; 23(12): 1301-1311, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765349

RESUMO

BACKGROUND: Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE: Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS: Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS: MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION: MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Olea/química , Triterpenos/farmacologia , Células 3T3-L1 , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Glucose/metabolismo , Camundongos , PPAR gama/genética , RNA/biossíntese , RNA/genética , Triglicerídeos/metabolismo , Triterpenos/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-26236377

RESUMO

Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.

7.
J Proteomics ; 83: 15-25, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23499989

RESUMO

Maslinic acid (MA) is an anti-tumoural agent which shows potent anti-proliferative properties against the HT29 colon-cancer cells. To shed light upon the active mechanism of MA we have investigated its effects upon the cytoskeleton. We used a proteomics procedure based on two-dimensional gel electrophoresis, mass analysis and peptide mass fingerprinting. The incubation of HT29 cells with MA led to G1 cell-cycle arrest. After 24hours' exposure to 3.7µM (IC50/8) and 30µM (IC50) MA fourteen differentially expressed cytoskeletal proteins could be discerned. One group of these proteins, made up of keratin 2, keratin 8, keratin type II cytoskeletal 8, keratin type I cytoskeletal 9, keratin type I cytoskeletal 18, cytokeratins 18 and 19, and ß-actin, exert a structural function, whilst another group, made up of lamin B1, gelsolin 1, septin 2, villin 1, actin-related protein 2 and moesin, is related to the nucleation of actin and cytoskeleton formation. Changes in the expression of moesin, villin 1 and ß-actin identified by the proteomics techniques were corroborated by Western blotting. This is the first evidence obtained of the regulatory effects of MA on the cytoskeleton, which may prove to be one of the bases of its anti-proliferative effect against colon-cancer cells. BIOLOGICAL SIGNIFICANCE: In this paper we describe the changes in the expression of different cytoskeleton proteins identified by the proteomics techniques and corroborated by Western blotting. This is the first evidence obtained of the regulatory effects of MA on the cytoskeleton, which may prove to be one of the bases of its anti-proliferative effect against colon-cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/metabolismo , Proteínas do Citoesqueleto/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Triterpenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...