Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112342, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027298

RESUMO

XLF/Cernunnos is a component of the ligation complex used in classical non-homologous end-joining (cNHEJ), a major DNA double-strand break (DSB) repair pathway. We report neurodevelopmental delays and significant behavioral alterations associated with microcephaly in Xlf-/- mice. This phenotype, reminiscent of clinical and neuropathologic features in humans deficient in cNHEJ, is associated with a low level of apoptosis of neural cells and premature neurogenesis, which consists of an early shift of neural progenitors from proliferative to neurogenic divisions during brain development. We show that premature neurogenesis is related to an increase in chromatid breaks affecting mitotic spindle orientation, highlighting a direct link between asymmetric chromosome segregation and asymmetric neurogenic divisions. This study reveals thus that XLF is required for maintaining symmetric proliferative divisions of neural progenitors during brain development and shows that premature neurogenesis may play a major role in neurodevelopmental pathologies caused by NHEJ deficiency and/or genotoxic stress.


Assuntos
Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Humanos , Animais , Camundongos , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Encéfalo/metabolismo
2.
DNA Repair (Amst) ; 88: 102801, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032862

RESUMO

High fidelity of genetic transmission in neural stem and progenitor cells (NSPCs) has been long time considered to be crucial for brain development and homeostasis. However, recent studies have identified recurrent DSB clusters in dividing NSPCs, which may underlie the diversity of neuronal cell types. This raised the interest in understanding how NSPCs sense and repair DSBs and how this mechanism could be altered by environmental genotoxic stress caused by pollutants or ionizing radiation. Here, we show that embryonic mouse neural stem and progenitor cells (NSPCs) have significantly higher capacity than mouse embryonic fibroblasts (MEFs) to maintain their chromosome stability in response to acute (γ-radiation) and chronic (tritiated thymidine -3H-T- incorporation into DNA) genotoxic stress. Cells deficient for XLF/Cernunnos, which is involved in non-homologous end joining DNA (NHEJ) repair, highlighted important variations in fidelity of DNA repair pathways between the two cell types. Strikingly, a progressive and generalized chromosome instability was observed in MEFs cultured with 3H-T at long-term, whereas NSPCs cultured in the same conditions, preserved their chromosome stability thanks to higher DNA repair activity further enhanced by an adaptive response and also to the elimination of damaged cells by apoptosis. This specific DNA damage response of NSPCs may rely on the necessity for preservation of their genome stability together with their possible function in creating neuronal genetic diversity.


Assuntos
Instabilidade Cromossômica/genética , Dano ao DNA , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Células-Tronco Neurais/metabolismo , Animais , Reparo do DNA/genética , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...