Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080786

RESUMO

High-intensity (∼1 TW/cm2 and higher) region formed in the propagation of ∼60 GW, 90 fs Ti:Sapphire laser pulse on a ∼100 m path in air spans for several tens of meters and includes a plasma filament and a postfilament light channel. The intensity in this extended region is high enough to generate an infrared supercontinuum wing and to initiate laser-induced discharge in the gap between the electrodes. In the experiment and simulations, we delay the high-intensity region along the propagation direction by inserting metal-wire meshes with square cells at the laser system output. We identify the presence of a high-intensity region from the clean-spatial-mode distributions, appearance of the infrared supercontinuum wing, and occurrence of the laser-induced discharge. In the case of free propagation (without any meshes), the onset of the high-intensity zone is at 40-52 m from the laser system output with ∼30 m extension. Insertion of the mesh with 3 mm cells delays the beginning of the high-intensity region to 49-68 m with the same ∼30 m extension. A decrease in the cell size to 1 mm leads to both delay and shrinking of the high-intensity zone to 71-73 m and 6 m, respectively. Three-dimensional simulations in space confirm the mesh-induced delay of the high-intensity zone as the cell size decreases.

2.
Opt Lett ; 47(22): 5917-5920, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219136

RESUMO

We study the angular distribution of different spectral components of the terahertz emission from a single-color laser filament plasma. The opening angle of a terahertz cone is experimentally demonstrated to be proportional to the inverse square root of both plasma channel length and terahertz frequency in the non-linear focusing mode, whereas in the case of linear focusing this dependence breaks down. We also experimentally show that any conclusions of terahertz radiation spectral composition require the angle range from which it is collected to be specified.

3.
Opt Lett ; 45(14): 4009-4011, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667341

RESUMO

The influence of plasma channel length on an angular terahertz (THz) radiation distribution is experimentally studied for the channel formed under filamentation of an ultrashort laser pulse. It is shown that the angular distribution of the THz emission depends only on laser intensity in the filament and plasma density of the plasma channel and does not depend on the plasma channel length. A qualitative explanation of the THz emission screening by the filament plasma channel is proposed.

4.
Opt Lett ; 44(9): 2165-2168, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042174

RESUMO

At first glance, the amount of water molecules naturally contained in humid air is negligibly small to affect filamentation of ultrashort laser pulses. However, here we show, both experimentally and numerically, that for ultraviolet laser pulses with 248 nm wavelength this is not true. We demonstrate that with increase of air humidity the plasma channels generated by the ultraviolet laser pulses in air become longer and wider, while the corresponding electron density in humid air can be up to one order of magnitude higher compared to dry air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...