Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 232: 127-129, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30537599

RESUMO

The scope of RNA-aptamers application is becoming wider and has expanded beyond solely medical use. We propose the use of RNA-aptamers in plants to suppress the functions of individual proteins, thereby achieving resistance to various biotic and abiotic stresses. In current work we experimentally demonstrate the possibility of inhibiting protein activity in N. bentamiana plants by quenching the fluorescence level of GFP (green fluorescent protein) as a result of specifically selected RNA-aptamer binding action.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Plantas/fisiologia , Nicotiana/metabolismo
2.
Molecules ; 23(4)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29671793

RESUMO

The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes (AtCYP19-1/ROC3, AtFKBP65/ROF2, and AtCYP57) in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H) system for protein⁻protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1) and putative protein phosphatase (At2g30020; АТ2), whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010). Identified interactors confirm our previous findings that immunophilins ROC3, ROF2, and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.


Assuntos
Arabidopsis/metabolismo , Imunofilinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunofilinas/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...