Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2337-2346, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38411102

RESUMO

In equilibrium and supercooled liquids, polymorphism is manifested by thermodynamic regions defined in the phase diagram, which are predominantly of different short- and medium-range order (local structure). It is found that on the phase diagram of the water model, the thermodynamic region corresponding to the equilibrium liquid phase is divided by a line of the smooth liquid-liquid crossover. In the case of the water model TIP4P/2005, this crossover is revealed by various local order parameters and corresponds to pressures on the order of 3150 ± 350 atm at ambient temperature. In the vicinity of the crossover, the dynamics of water molecules change significantly, which is reflected, in particular, in the fact that the self-diffusion coefficient reaches its maximum values. In addition, changes in the structure also manifest themselves in changes in the kinetics of hydrogen bonding, which are captured by values of such quantities as the average lifetime of hydrogen bonding, the average lifetimes of different local coordination numbers, and the frequencies of changes in different local coordination numbers. An interpretation of the hydrogen bond kinetics in terms of the free energy landscape concept in the space of possible coordination numbers is proposed.

2.
Phys Rev E ; 108(1-2): 015206, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583226

RESUMO

In this paper, we present the theoretical formalism describing the collective ion dynamics of the nonideal Coulomb classical one-component plasmas on the basis of the self-consistent relaxation theory. The theory is adapted to account for correlations between the frequency relaxation parameters that characterize the three- and four-particle dynamics and the parameters associated with the two-particle dynamics. The dynamic structure factor spectra and dispersion characteristics calculated for a wide range of wave numbers are in agreement with the molecular dynamics simulation data and the results obtained with the theory of the frequency moments. The proposed formalism reproduces all the features inherent to the Coulomb one-component plasmas and requires only knowledge of the coupling parameter and the information about the structure.

3.
J Funct Biomater ; 14(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233387

RESUMO

TiNi alloys are very widely used materials in implant fabrication. When applied in rib replacement, they are required to be manufactured as combined porous-monolithic structures, ideally with a thin, porous part well-adhered to its monolithic substrate. Additionally, good biocompatibility, high corrosion resistance and mechanical durability are also highly demanded. So far, all these parameters have not been achieved in one material, which is why an active search in the field is still underway. In the present study, we prepared new porous-monolithic TiNi materials by sintering a TiNi powder (0-100 µm) on monolithic TiNi plates, followed by surface modification with a high-current pulsed electron beam. The obtained materials were evaluated by a set of surface and phase analysis methods, after which their corrosion resistance and biocompatibility (hemolysis, cytotoxicity, and cell viability) were evaluated. Finally, cell growth tests were conducted. In comparison with flat TiNi monoliths, the newly developed materials were found to have better corrosion resistance, also demonstrating good biocompatibility and potential for cell growth on their surface. Thus, the newly developed porous-on-monolith TiNi materials with different surface porosity and morphology showed promise as potential new-generation implants for use in rib endoprostheses.

4.
J Funct Biomater ; 14(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976079

RESUMO

Alloys based on TiNi are widely used in various fields of technology and medicine. In the present work, we report on the preparation of TiNi-alloy-based wire with the shape-memory effect, which was used for compression clips for surgery. The composition and structure of the wire and its martensitic and physical-chemical properties were studied using SEM, TEM, optic microscopy, profilometry, mechanical tests, etc. The TiNi alloy was found to consist of B2 and B19' and secondary-phase particles of Ti2Ni, TiNi3 and Ti3Ni4. Its matrix was slightly enriched in Ni (50.3 at.% of Ni). A homogeneous grain structure was revealed (an average grain size of 19 ± 0.3 µm) with equal quantities of grain boundaries of special and general types. The surface oxide layer provides improved biocompatibility and promotes the adhesion of protein molecules. Overall, the obtained TiNi wire was concluded to exhibit martensitic, physical and mechanical properties suitable for its use as an implant material. The wire was then used for manufacturing compression clips with the shape-memory effect and applied in surgery. The medical experiment that involved 46 children demonstrated that the use of such clips in children with double-barreled enterostomies permitted improvement in the results of surgical treatment.

5.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770134

RESUMO

The Arrhenius crossover temperature, TA, corresponds to a thermodynamic state wherein the atomistic dynamics of a liquid becomes heterogeneous and cooperative; and the activation barrier of diffusion dynamics becomes temperature-dependent at temperatures below TA. The theoretical estimation of this temperature is difficult for some types of materials, especially silicates and borates. In these materials, self-diffusion as a function of the temperature T is reproduced by the Arrhenius law, where the activation barrier practically independent on the temperature T. The purpose of the present work was to establish the relationship between the Arrhenius crossover temperature TA and the physical properties of liquids directly related to their glass-forming ability. Using a machine learning model, the crossover temperature TA was calculated for silicates, borates, organic compounds and metal melts of various compositions. The empirical values of the glass transition temperature Tg, the melting temperature Tm, the ratio of these temperatures Tg/Tm and the fragility index m were applied as input parameters. It has been established that the temperatures Tg and Tm are significant parameters, whereas their ratio Tg/Tm and the fragility index m do not correlate much with the temperature TA. An important result of the present work is the analytical equation relating the temperatures Tg, Tm and TA, and that, from the algebraic point of view, is the equation for a second-order curved surface. It was shown that this equation allows one to correctly estimate the temperature TA for a large class of materials, regardless of their compositions and glass-forming abilities.

6.
Phys Rev E ; 105(2-2): 025204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291083

RESUMO

The self-consistent relaxation theory is employed to describe the collective ion dynamics in strongly coupled Yukawa classical one-component plasmas. The theory is applied to equilibrium states corresponding to intermediate screening regimes with appropriate values of the structure and coupling parameters. The information about the structure (the radial distribution function and the static structure factor) and the thermodynamics of the system are sufficient to describe collective dynamics over a wide range of spatial scales, namely, from the extended hydrodynamic to the microscopic dynamics scale. The main experimentally measurable characteristics of the equilibrium collective dynamics of ions-the spectrum of the dynamic structure factor, the dispersion parameters, the speed of sound, and the sound attenuation-are determined within the framework of the theory without using any adjustable parameters. The results demonstrate agreement with molecular dynamics simulations. Thus a direct realization is presented of the key idea of statistical mechanics: for the theoretical description of the collective particle dynamics in equilibrium fluids it is sufficient to know the interparticle interaction potential and the structural characteristics. Comparison with alternative or complementary theoretical approaches is provided.

7.
J Chem Phys ; 152(22): 224501, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534538

RESUMO

Kinetic rate factors of crystallization have a direct effect on formation and growth of an ordered solid phase in supercooled liquids and glasses. Using the crystallizing Lennard-Jones liquid as an example, in the present work, we perform a direct quantitative estimation of values of the key crystallization kinetic rate factors-the rate g+ of particle attachments to a crystalline nucleus and the rate g- of particle detachments from a nucleus. We propose a numerical approach, according to which a statistical treatment of the results of molecular dynamics simulations was performed without using any model functions and/or fitting parameters. This approach allows one to accurately estimate the critical nucleus size nc. We find that for the growing nuclei, whose sizes are larger than the critical size nc, the dependence of these kinetic rate factors on the nucleus size n follows a power law. In the case of the subnucleation regime, when the nuclei are smaller than nc, the n-dependence of the quantity g+ is strongly determined by the inherent microscopic properties of a system, and this dependence cannot be described in the framework of any universal law (for example, a power law). It has been established that the dependence of the growth rate of a crystalline nucleus on its size goes into the stationary regime at the size n > 3nc particles.

8.
Phys Chem Chem Phys ; 22(7): 4122-4129, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32031545

RESUMO

Polyvalent metal melts (gallium, tin, bismuth, etc.) have microscopic structural features, which are detected by neutron and X-ray diffraction and which are absent in simple liquids. Based on neutron and X-ray diffraction data and the results of ab initio molecular dynamics simulations for liquid gallium, we examine the structure of this liquid metal at the atomistic level. Time-resolved cluster analysis allows one to reveal that the short-range structural order in liquid gallium is determined by a range of the correlation lengths. This analysis, performed on a set of independent samples corresponding to equilibrium liquid phase, discloses that there are no stable crystalline domains and molecule-like Ga2 dimers typical for crystal phases of gallium. The structure of liquid gallium can be reproduced by the simplified model of the close-packed system of soft quasi-spheres. The results can be applied to analyze the fine structure of other polyvalent liquid metals.

9.
Phys Chem Chem Phys ; 19(18): 11340-11353, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28421216

RESUMO

In this work, we study crystalline nuclei growth in glassy systems, focusing primarily on the early stages of the process, during which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simulation results obtained for two crystallizing glassy systems, we evaluate the growth laws of the crystalline nuclei and the parameters of the growth kinetics at temperatures corresponding to deep supercooling; herein, a statistical treatment of the simulation results is carried out using the mean-first-passage-time method. It is found that for the considered systems at different temperatures, the crystal growth laws that were rescaled onto the waiting times of the critically-sized nuclei follow a unified dependence, and can significantly simplify the theoretical description of the post-nucleation growth of crystalline nuclei. The evaluated size-dependent growth rates are characterized by a transition to the steady-state growth regime, which depends on the temperature and occurs in the glassy systems when the size of a growing nucleus becomes two-three times larger than the critical size. It is suggested that the temperature dependencies of the crystal growth rate characteristics should be considered by using the reduced temperature scale T[combining tilde]. Thus, it is revealed that the scaled values of the crystal growth rate characteristics (namely, the steady-state growth rate and the attachment rate for the critically-sized nucleus) as functions of the reduced temperature T[combining tilde] for glassy systems follow unified power-law dependencies. This finding is supported by the available simulation results; the correspondence with the experimental data for the crystal growth rates in glassy systems at temperatures near the glass transition is also discussed.

10.
J Chem Phys ; 142(10): 104502, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770546

RESUMO

Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over "experimental" (finite) time-scale for the range of phase diagram with high values of pressure. We show that the structural ordering in glasses at such conditions is initiated through the nucleation mechanism, and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the scaled values of the nucleation time, τ1 (average waiting time of the first nucleus with the critical size), in glassy systems as a function of the reduced temperature, T˜, are collapsed onto a single line reproducible by the power-law dependence. This scaling is supported by the simulation results for the model glassy systems for a wide range of temperatures as well as by the experimental data for the stoichiometric glasses at the temperatures near the glass transition.

11.
J Chem Phys ; 140(2): 024104, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24437862

RESUMO

We present the statistical method as a direct extension of the mean first-passage time concept to the analysis of molecular dynamics simulation data of a phase transformation. According to the method, the mean first-passage time trajectories for the first (i = 1) as well as for the subsequent (i = 2, 3, 4,[ellipsis (horizontal)]) nucleation events should be extracted that allows one to calculate the time-dependent nucleation rate, the critical value of the order parameter (the critical size), the waiting times for the nucleation events, and the growth law of the nuclei - i.e., all the terms, which are usually necessary to characterize the overall transition kinetics. There are no restrictions in the application of the method by the specific thermodynamic regions; and the nucleation rate parameters are extracted according to their basic definitions. The method differs from the Wedekind-Bartell scheme and its modification [A. V. Mokshin and B. N. Galimzyanov, J. Phys. Chem. B 116, 11959 (2012)], where the passage-times for the first (largest) nucleus are evaluated only and where the average waiting time for the first nucleation event is accessible instead of the true steady-state nucleation time scale. We demonstrate an efficiency of the method by its application to the analysis of the vapor-to-liquid transition kinetics in water at the different temperatures. The nucleation rate/time characteristics and the droplet growth parameters are computed on the basis of the coarse-grained molecular dynamics simulation data.

12.
Artigo em Inglês | MEDLINE | ID: mdl-23848675

RESUMO

Nucleation is an out-of-equilibrium process that can be strongly affected by the presence of external fields. In this paper, we report a simple extension of classical nucleation theory to systems submitted to an homogeneous shear flow. The theory involves accounting for the anisotropy of the critical nucleus formation and introduces a shear-rate-dependent effective temperature. This extended theory is used to analyze the results of extensive molecular dynamics simulations that explore a broad range of shear rates and undercoolings. At fixed temperature, a maximum in the nucleation rate is observed, when the relaxation time of the system is comparable to the inverse shear rate. In contrast to previous studies, our approach does not require a modification of the thermodynamic description, as the effect of shear is mainly embodied into a modification of the kinetic prefactor and of the temperature.

13.
J Phys Chem B ; 116(39): 11959-67, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22957738

RESUMO

The steady-state homogeneous vapor-to-liquid nucleation and the succeeding liquid droplet growth process are studied for water systems by means of the coarse-grained molecular dynamics simulations with the mW model suggested originally by Molinero et al. [Molinero, V.; Moore, E. B. J. Phys. Chem. B 2009, 113, 4008-4016]. The investigation covers the temperature range 273 ≤ T/K ≤ 363 and the system's pressure p ~/= 1 atm. The thermodynamic integration scheme and the extended mean first passage time method as tools to find the nucleation and cluster growth characteristics are applied. The surface tension is numerically estimated and is compared with the experimental data for the considered temperature range. We extract the nucleation characteristics such as the steady-state nucleation rate, the critical cluster size, the nucleation barrier, and the Zeldovich factor and perform the comparison with the other simulation results and test the treatment of the simulation results within the classical nucleation theory. We found that the liquid droplet growth is unsteady and follows the power law. Also, the growth laws exhibit the features unified for all of the considered temperatures. The geometry of the nucleated droplets is also studied.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 1): 021505, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20866816

RESUMO

Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency.

15.
J Chem Phys ; 130(3): 034502, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19173526

RESUMO

We report results of nonequilibrium molecular dynamics simulations of a one-component glassy system under the influence of a shear flow, with the aim of investigating shear-induced ordering of this system. In spite of the very low temperature, the system transforms into a strained crystalline state through well defined nucleation events. Various characteristics of the observed ordering at different strain rates and temperatures are discussed. We also define and discuss the transition rates.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 1): 021505, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18352032

RESUMO

The influence of a stationary shear flow on the crystallization in a glassy system is studied by means of molecular dynamics simulations and subsequent cluster analysis. The results reveal two opposite effects of the shear flow on the processes of topological ordering in the system. Shear promotes the formation of separated crystallites and suppresses the appearance of the large clusters. The shear-induced ordering proceeds in two stages, where the first stage is related mainly to the growth of crystallites and the second stage is due to an adjustment of the created clusters and a progressive alignment of their lattice directions. The influence of strain and shear rate on the crystallization is also investigated. In particular, we find two plausible phenomenological relations between the shear rate and the characteristic time scale needed for ordering of the amorphous system under shear.

17.
Phys Rev Lett ; 95(20): 200601, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16384045

RESUMO

Memory effects are a key feature in the description of the dynamical systems governed by the generalized Langevin equation, which presents an exact reformulation of the equation of motion. A simple measure for the estimation of memory effects is introduced within the framework of this description. Numerical calculations of the suggested measure and the analysis of memory effects are also applied for various model physical systems as well as for the phenomena of "long time tails" and anomalous diffusion.

18.
J Chem Phys ; 121(15): 7341-6, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15473804

RESUMO

In this paper the investigation of the dynamical processes of liquid alkali metals is executed by analyzing the time scales of relaxation processes in liquids. The obtained theoretical dynamic structure factor S(k,omega) for the case of liquid lithium is found to be in excellent agreement with the recently received inelastic x-ray scattering data. The comparison and interrelation with other theories are given here. Finally, an important part of this paper is the confirmation of the scale uniformity of the dynamic processes in liquid alkali metals predicted by some previous molecular dynamic simulation studies.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 1): 051201, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682788

RESUMO

We report the results of calculation of diffusion coefficients for Lennard-Jones liquids, based on the idea of time-scale invariance of relaxation processes in liquids. The results were compared with the molecular dynamics data for the Lennard-Jones system and a good agreement of our theory with these data over a wide range of densities and temperatures was obtained. By calculations of the non-Markovity parameter we have numerically estimated statistical memory effects of diffusion in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...