Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; : 131064, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964513

RESUMO

Sulfide oxidizing bacteria are used in industrial biodesulfurization processes to convert sulfide to sulfur. These bacteria can spatially separate sulfide removal from terminal electron transfer, thereby acting as sulfide shuttles. The mechanisms underlying sulfide shuttling are not yet clear. In this work, newly obtained sulfide removal data were used to develop a new model for anaerobic sulfide removal and this model was shown to be an improvement over two previously published models. The new model describes a fast chemical step and a consecutive slow enzymatic step. The improved model includes the effect of pH, with higher total sulfide removal at increasing pH, as well as partial sulfide removal at higher sulfide concentrations. The two-stage model is supported by recent developments in anaerobic sulfide removal research and contributes to a better understanding of the underlying mechanisms. The model is a step toward accurately modelling anaerobic sulfide removal in industrial systems.

2.
Water Res ; 259: 121795, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889663

RESUMO

Biological desulfurization under haloalkaline conditions has been applied worldwide to remove hydrogen sulfide (H2S) from sour gas steams. The process relies on sulfide-oxidizing bacteria (SOB) to oxidize H2S to elemental sulfur (S8), which can then be recovered and reused. Recently, a dual-reactor biological desulfurization system was implemented where an anaerobic (sulfidic) bioreactor was incorporated as an addition to a micro-oxic bioreactor, allowing for higher S8 selectivity by limiting by-product formation. The highly sulfidic bioreactor environment enabled the SOB to remove (poly)sulfides (Sx2-) in the absence of oxygen, with Sx2- speculated as a main substrate in the removal pathway, thus making it vital to understand its role in the process. The SOB are influenced by the oxidation-reduction potential (ORP) set-point of the micro-oxic bioreactor as it is used to control the product of oxidation (S8 vs. SO42-), while the uptake of Sx2- by SOB has been qualitatively linked to pH. Therefore, to quantify these effects, this work determined the concentration and speciation of Sx2- in the biological desulfurization process under various pH values and ORP set-points. The total Sx2- concentrations in the sulfidic zone increased at elevated pH (8.9) compared to low pH (< 8.0), with on average 3.3 ± 1.0 mM-S more Sx2-. Chain lengths varied, with S72- only doubling in concentration while S52- increased 9 fold, which is in contrast with observations from abiotic systems. Changes to the ORP set-point of the micro-oxic reactor did not produce substantial changes in Sx2- concentration in the sulfidic zone. This illustrates that the reduction degree of the SOB in the micro-oxic bioreactor does not enhance their ability to interact with Sx2- in the sulfidic bioreactor. This increased understanding of how both pH and ORP affect changes in Sx2- concentration and chain length can lead to improved efficiency and design of the dual-reactor biological desulfurization process.


Assuntos
Reatores Biológicos , Oxirredução , Sulfetos , Enxofre , Sulfetos/química , Sulfetos/metabolismo , Concentração de Íons de Hidrogênio , Sulfeto de Hidrogênio/metabolismo
3.
Environ Sci Technol ; 57(36): 13530-13540, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639370

RESUMO

Removal of hydrogen sulfide (H2S) can be achieved using the sustainable biological desulfurization process, where H2S is converted to elemental sulfur using sulfide-oxidizing bacteria (SOB). A dual-bioreactor process was recently developed where an anaerobic (sulfidic) bioreactor was used between the absorber column and micro-oxic bioreactor. In the absorber column and sulfidic bioreactor, polysulfides (Sx2-) are formed due to the chemical equilibrium between H2S and sulfur (S8). Sx2- is thought to be the intermediate for SOB to produce sulfur via H2S oxidation. In this study, we quantify Sx2-, determine their chain-length distribution under high H2S loading rates, and elucidate the relationship between biomass and the observed biological removal of sulfides under anaerobic conditions. A linear relationship was observed between Sx2- concentration and H2S loading rates at a constant biomass concentration. Increasing biomass concentrations resulted in a lower measured Sx2- concentration at similar H2S loading rates in the sulfidic bioreactor. Sx2- of chain length 6 (S62-) showed a substantial decrease at higher biomass concentrations. Identifying Sx2- concentrations and their chain lengths as a function of biomass concentration and the sulfide loading rate is key in understanding and controlling sulfide uptake by the SOB. This knowledge will contribute to a better understanding of how to reach and maintain a high selectivity for S8 formation in the dual-reactor biological desulfurization process.


Assuntos
Sulfeto de Hidrogênio , Sulfetos , Biomassa , Enxofre
4.
Water Res ; 227: 119296, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351351

RESUMO

For over 30 years, biological gas desulfurization under halo-alkaline conditions has been studied and optimized. This technology is currently applied in already 270 commercial installations worldwide. Sulfur particle separation, however, remains a challenge; a fraction of sulfur particles is often too small for liquid-solid separation with conventional separation technology. In this article, we report the effects of a novel sulfidic reactor, inserted in the conventional process set-up, on sulfur particle size and morphology. In the sulfidic reactor polysulfide is produced by the reaction of elemental sulfur particles and sulfide, which is again converted to elemental sulfur in a gas-lift reactor. We analyzed sulfur particles produced in continuous, long term lab-scale reactor experiments under various sulfide concentrations and sulfidic retention times. The analyses were performed with laser diffraction particle size analysis and light microscopy. These show that the smallest particles (< 1 µm) have mostly disappeared under the highest sulfide concentration (4.1 mM) and sulfidic retention time (45 min). Under these conditions also agglomeration of sulfur particles was promoted. Model calculations with thermodynamic and previously derived kinetic data on polysulfide formation confirm the experimental data on the removal of the smallest particles. Under the 'highest sulfidic pressure', the model predicts that equilibrium conditions are reached between sulfur, sulfide and polysulfide and that 100% of the sulfur particles <1 µm are dissolved by the (autocatalytic) formation of polysulfides. These experiments and modeling results demonstrate that the insertion of a novel sulfidic reactor in the conventional process set-up promotes the removal of the smallest individual sulfur particles and promotes the production of sulfur agglomerates. The novel sulfidic reactor is therefore a promising process addition with the potential to improve process operation, sulfur separation and sulfur recovery.


Assuntos
Sulfetos , Enxofre , Oxirredução , Cinética , Reatores Biológicos
5.
J Hazard Mater ; 424(Pt D): 127696, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823957

RESUMO

We investigated the effect of polysulfide formation on properties of biologically produced elemental sulfur (S8) crystals, which are produced during biological desulfurization (BD) of gas. The recent addition of an anoxic-sulfidic reactor (AnSuR) to the BD process resulted in agglomerated particles with better settleability for S8 separation. In the AnSuR, polysulfides are formed by the reaction of bisulfide (HS-) with S8 and are subsequently oxidized to S8 in a gas-lift reactor. Therefore, sulfur particles from the BD are shaped (i.e. morphology and particle size) both by formation and dissolution. We assessed the reaction of HS- with S8 particles in anoxic, abiotic experiments in a batch reactor using two S8 samples from industrial BD reactors. Under these conditions, the sulfur particle surface became coarser and more porous, and in addition the smallest particles disappeared. Agglomerates initially fell apart but were reformed at a later stage. Moreover, we found different observed polysulfide formation rates for each S8 sample, which was related to the initial morphology and size. Our findings show that particle properties can be controlled abiotically and that settleability of S8 is increased by increasing both the HS--S8 ratio and retention time.


Assuntos
Sulfetos , Enxofre , Oxirredução , Tamanho da Partícula
6.
ACS Omega ; 6(42): 27913-27923, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722991

RESUMO

This article presents a novel crystal agglomeration strategy for elemental sulfur (S) produced during biological desulfurization (BD). A key element is the nucleophilic dissolution of S by sulfide (HS-) to polysulfides (S x 2-), which was enhanced by a sulfide-rich, anoxic reactor. This study demonstrates that with enhanced S x 2- formation, crystal agglomerates are formed with a uniform size (14.7 ± 3.1 µm). In contrast, with minimal S x 2- formation, particle size fluctuates markedly (5.6 ± 5.9 µm) due to the presence of agglomerates and single crystals. Microscopic analysis showed that the uniformly sized agglomerates had an irregular structure, whereas the loose particles and agglomerates were more defined and bipyramidal. The irregular agglomerates are explained by dissolution of S by (poly)sulfides, which likely changed the crystal surface structure and disrupted crystal growth. Furthermore, S from S x 2- appeared to form at least 5× faster than from HS- based on the average S x 2- chain length of x ≈ 5, thereby stimulating particle agglomeration. In addition, microscopy suggested that S crystal growth proceeded via amorphous S globules. Our findings imply that the crystallization product is controlled by the balance between dissolution and formation of S. This new insight has a strong potential to prevent poor S settleability in BD.

7.
Int J Mol Sci ; 18(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106846

RESUMO

Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO2. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance.


Assuntos
Acetatos/metabolismo , Bactérias/metabolismo , Fontes de Energia Bioelétrica , Metano/metabolismo , Reatores Biológicos , Dióxido de Carbono/metabolismo , Eletricidade , Eletrodos , Hidrogênio/metabolismo , Redes e Vias Metabólicas , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...