Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Front Public Health ; 12: 1340748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751584

RESUMO

Introduction: Parental burnout, known as a state of physical and psychological exhaustion, results in an imbalance between the parent's perceived stressors in relation to parenting, and the resources available to the parent to cope with such stressors. The causes and consequences of parental burnout for the parents themselves have been studied from the parents' point of view, but the perception of parents regarding the impact of parental burnout on the parent-child relationship has not yet been documented. Methods: We conducted a qualitative study through semi-structured interviews with exhausted parents (n=21). We aimed to better understand their general interactions with their children, as well as the way they communicate with them about their state of exhaustion, knowing that dealing with parental suffering can have a long-term impact on the child. Results: Our results reveal that exhausted parents experience a widespread loss of control in all areas of their lives, particularly in their interaction with their children, which generates feelings of guilt and shame. Communicating their experience to their children can create various difficulties for both parents and children. This may complicate the process of seeking help and reinforce the feeling of isolation. Discussion: An emerging result from our analysis leads us to identify a need for the parents to be heard and validated in their suffering who took part in this research.


Assuntos
Relações Pais-Filho , Pais , Pesquisa Qualitativa , Humanos , Feminino , Masculino , Pais/psicologia , Adulto , Criança , Pessoa de Meia-Idade , Entrevistas como Assunto , Esgotamento Psicológico/psicologia , Poder Familiar/psicologia , Adaptação Psicológica , Estresse Psicológico/psicologia
2.
ACS Nano ; 18(17): 11153-11164, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641345

RESUMO

Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.

4.
Sci Data ; 11(1): 421, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653962

RESUMO

Nearshore hydro- and morphodynamic data were collected during a field experiment under calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime. The experiment was conducted on the Sand Engine near Kijkduin, the Netherlands, from October 18, 2021, to January 7, 2022. Two artificial unvegetated dunes were constructed just above the high water line to measure storm erosion and dune impacts from higher water levels and waves. During the experiment, three storms occurred that resulted in significant erosion of both dunes. The collected hydrodynamic data include pressure sensor and velocimeter data along two cross-shore transects. The collected morphodynamic data include bathymetry and topography surveys, optical backscatter sensor data in the inner surf zone, and a continuous cross-shore line-scanning lidar data set of the dune face. This comprehensive data set can be used to (1) study relevant nearshore hydrodynamic and morphodynamic processes that occur during calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime, and (2) validate existing dune erosion models.

5.
Nat Nanotechnol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528108

RESUMO

Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation. The usual strategy to mitigate quantum effects has been to increase device complexity, but theory shows that if quantum effects can be exploited in molecular-scale electronics, this could provide a route to lower energy consumption and boost device performance. Here we demonstrate these effects experimentally, showing how the performance of molecular transistors is improved when the resistive channel contains two destructively interfering waves. We use a zinc-porphyrin coupled to graphene electrodes in a three-terminal transistor to demonstrate a >104 conductance-switching ratio, a subthreshold swing at the thermionic limit, a >7 kHz operating frequency and stability over >105 cycles. We fully map the anti-resonance interference features in conductance, reproduce the behaviour by density functional theory calculations and trace back the high performance to the coupling between molecular orbitals and graphene edge states. These results demonstrate how the quantum nature of electron transmission at the nanoscale can enhance, rather than degrade, device performance, and highlight directions for future development of miniaturized electronics.

6.
Angew Chem Int Ed Engl ; 63(16): e202401323, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410064

RESUMO

When designing a molecular electronic device for a specific function, it is necessary to control whether the charge-transport mechanism is phase-coherent transmission or particle-like hopping. Here we report a systematic study of charge transport through single zinc-porphyrin molecules embedded in graphene nanogaps to form transistors, and show that the transport mechanism depends on the chemistry of the molecule-electrode interfaces. We show that van der Waals interactions between molecular anchoring groups and graphene yield transport characteristic of Coulomb blockade with incoherent sequential hopping, whereas covalent molecule-electrode amide bonds give intermediately or strongly coupled single-molecule devices that display coherent transmission. These findings demonstrate the importance of interfacial engineering in molecular electronic circuits.

7.
iScience ; 26(11): 108117, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876819

RESUMO

DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.

8.
Glob Qual Nurs Res ; 10: 23333936231203818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899770

RESUMO

Public representations of people who experience mental illness (PEMI) have been well documented within the stigma literature. However, studies about mental health nurses' representations of PEMI are still scarce and characterized by contradictions. Using the theoretical concept of social representation instead of stigma, the current study aims to explore and understand mental health nurses' social representations of PEMI. Qualitative research was conducted based on 13 semi-structured interviews with nurses from two psychiatric units in general hospitals. Data were analyzed using interpretative phenomenological analysis. Results showed that nurses' social representations were characterized by paradoxes. They explicitly displayed positive social representations, while nuancing them from an implicit point of view. The nurses wanted to work toward a destigmatizing voice for PEMI while nuancing their assertions to sound honest and accurate, which led them to a state of cognitive dissonance.

9.
JAMA Cardiol ; 8(11): 1013-1021, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703036

RESUMO

Importance: Even after fractional flow reserve (FFR)-guided complete revascularization, patients with myocardial infarction (MI) have high rates of recurrent major adverse cardiovascular events (MACE). These recurrences may be caused by FFR-negative high-risk nonculprit lesions. Objective: To assess the association between optical coherence tomography (OCT)-identified high-risk plaques of FFR-negative nonculprit lesions and occurrence of MACE in patients with MI. Design, Setting, and Participants: PECTUS-obs (Identification of Risk Factors for Acute Coronary Events by OCT After STEMI [ST-segment elevation MI] and NSTEMI [non-STEMI] in Patients With Residual Non-flow Limiting Lesions) is an international, multicenter, prospective, observational cohort study. In patients presenting with MI, OCT was performed on all FFR-negative (FFR > 0.80) nonculprit lesions. A high-risk plaque was defined containing at least 2 of the following prespecified criteria: (1) a lipid arc at least 90°, (2) a fibrous cap thickness less than 65 µm, and (3) either plaque rupture or thrombus presence. Patients were enrolled from December 14, 2018, to September 15, 2020. Data were analyzed from December 2, 2022, to June 28, 2023. Main Outcome and Measure: The primary end point of MACE, a composite of all-cause mortality, nonfatal MI, or unplanned revascularization, at 2-year follow-up was compared in patients with and without a high-risk plaque. Results: A total of 438 patients were enrolled, and OCT findings were analyzable in 420. Among included patients, mean (SD) age was 63 (10) years, 340 (81.0) were men, and STEMI and non-STEMI were equally represented (217 [51.7%] and 203 [48.3%]). A mean (SD) of 1.17 (0.42) nonculprit lesions per patient was imaged. Analysis of OCT images revealed at least 1 high-risk plaque in 143 patients (34.0%). The primary end point occurred in 22 patients (15.4%) with a high-risk plaque and 23 of 277 patients (8.3%) without a high-risk plaque (hazard ratio, 1.93 [95% CI, 1.08-3.47]; P = .02), primarily driven by more unplanned revascularizations in patients with a high-risk plaque (14 of 143 [9.8%] vs 12 of 277 [4.3%]; P = .02). Conclusions and Relevance: Among patients with MI and FFR-negative nonculprit lesions, the presence of a high-risk plaque is associated with a worse clinical outcome, which is mainly driven by a higher number of unplanned revascularizations. In a population with a high recurrent event rate despite physiology-guided complete revascularization, these results call for research on additional pharmacological or focal treatment strategies in patients harboring high-risk plaques.


Assuntos
Reserva Fracionada de Fluxo Miocárdico , Infarto do Miocárdio , Intervenção Coronária Percutânea , Placa Aterosclerótica , Infarto do Miocárdio com Supradesnível do Segmento ST , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Estudos Prospectivos , Intervenção Coronária Percutânea/métodos , Infarto do Miocárdio/epidemiologia , Placa Aterosclerótica/diagnóstico por imagem
10.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37591722

RESUMO

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.


Assuntos
Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Metotrexato/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Ácido Fólico/farmacologia , Fluoruracila/farmacologia
11.
iScience ; 26(7): 107183, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456854

RESUMO

An increasing number of patients develop an atherothrombotic myocardial infarction (MI) in the absence of standard modifiable risk factors (SMuRFs). Monocytes and macrophages regulate the development of atherosclerosis, and monocytes can adopt a long-term hyperinflammatory phenotype by epigenetic reprogramming, which can contribute to atherogenesis (called "trained immunity"). We assessed circulating monocyte phenotype and function and specific histone marks associated with trained immunity in SMuRFless patients with MI and matched healthy controls. Even in the absence of systemic inflammation, monocytes from SMuRFless patients with MI had an increased overall cytokine production capacity, with the strongest difference for LPS-induced interleukin-10 production, which was associated with an enrichment of the permissive histone marker H3K4me3 at the promoter region. Considering the lack of intervenable risk factors in these patients, trained immunity could be a promising target for future therapy.

12.
J Am Chem Soc ; 145(28): 15265-15274, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417934

RESUMO

Since the early days of quantum mechanics, it has been known that electrons behave simultaneously as particles and waves, and now quantum electronic devices can harness this duality. When devices are shrunk to the molecular scale, it is unclear under what conditions does electron transmission remain phase-coherent, as molecules are usually treated as either scattering or redox centers, without considering the wave-particle duality of the charge carrier. Here, we demonstrate that electron transmission remains phase-coherent in molecular porphyrin nanoribbons connected to graphene electrodes. The devices act as graphene Fabry-Pérot interferometers and allow for direct probing of the transport mechanisms throughout several regimes. Through electrostatic gating, we observe electronic interference fringes in transmission that are strongly correlated to molecular conductance across multiple oxidation states. These results demonstrate a platform for the use of interferometric effects in single-molecule junctions, opening up new avenues for studying quantum coherence in molecular electronic and spintronic devices.

13.
Nat Mater ; 22(2): 180-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36732344

RESUMO

Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches1-3. Molecular graphene nanoribbons4-6 now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes. Here we demonstrate the massive enhancement of the solubility of graphene nanoribbons by edge functionalization, to yield ultra-clean transport devices with sharp single-electron features. Strong electron-vibron coupling leads to a prominent Franck-Condon blockade, and the atomic definition of the edges allows identifying the associated transverse bending mode. These results demonstrate how molecular graphene can yield exceptionally clean electronic devices directly from solution. The sharpness of the electronic features opens a path to the exploitation of spin and vibrational properties in atomically precise graphene nanostructures.

14.
Bioconjug Chem ; 34(1): 78-84, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35969686

RESUMO

The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/química , Molibdênio/química , Biotina/química , Nanoestruturas/química , DNA
15.
Trends Cardiovasc Med ; 33(2): 92-106, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728349

RESUMO

Angiography alone is the most commonly used imaging modality for guidance of percutaneous coronary interventions. Angiography is limited, however, by several factors, including that it only portrays a low resolution, two-dimensional outline of the lumen and does not inform on plaque composition and functional stenosis severity. Optical coherence tomography (OCT) is an intracoronary imaging technique that has superior spatial resolution compared to all other imaging modalities. High-resolution imaging of the vascular wall enables precise measurement of vessel wall and luminal dimensions, more accurately informing about the anatomic severity of epicardial stenoses, and also provides input for computational models to assess functional severity. The very high-resolution images also permit plaque characterization that may be informative for prognostication. Moreover, periprocedural imaging provides valuable information to guide lesion preparation, stent implantation and to evaluate acute stent complications for which iterative treatment might reduce the occurrence of major adverse stent events. As such, OCT represent a potential future all-in-one tool that provides the data necessary to establish the indications, procedural planning and optimization, and final evaluation of percutaneous coronary revascularization.


Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Placa Aterosclerótica , Humanos , Tomografia de Coerência Óptica/métodos , Stents , Intervenção Coronária Percutânea/efeitos adversos , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/patologia , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/etiologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Vasos Coronários/patologia , Resultado do Tratamento , Ultrassonografia de Intervenção/métodos
16.
Phys Rev Lett ; 129(20): 207702, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462006

RESUMO

The outcome of an electron-transfer process is determined by the quantum-mechanical interplay between electronic and vibrational degrees of freedom. Nonequilibrium vibrational dynamics are known to direct electron-transfer mechanisms in molecular systems; however, the structural features of a molecule that lead to certain modes being pushed out of equilibrium are not well understood. Herein, we report on electron transport through a porphyrin dimer molecule, weakly coupled to graphene electrodes, that displays sequential tunneling within the Coulomb-blockade regime. The sequential transport is initiated by current-induced phonon absorption and proceeds by rapid sequential transport via a nonequilibrium vibrational distribution of low-energy modes, likely related to torsional molecular motions. We demonstrate that this is an experimental signature of slow vibrational dissipation, and obtain a lower bound for the vibrational relaxation time of 8 ns, a value dependent on the molecular charge state.

17.
Front Endocrinol (Lausanne) ; 13: 926210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966052

RESUMO

Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.


Assuntos
Hormônio do Crescimento Humano , Receptores da Somatotropina , Animais , Proliferação de Células , Hormônio do Crescimento/fisiologia , Humanos , Fator de Crescimento Insulin-Like I , Mamíferos , Camundongos
18.
Front Psychol ; 13: 913447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795415

RESUMO

Objective: Our research aim is to enrich the conceptualization of high conflict post-divorce co-parenting by understanding the dynamic process involved. Background: The studied phenomena were explored by linking previous scientific knowledge to practice. Method: We cross-referenced the previous study results with the experiences reported by eight professionals and tried to answer the following research question: how professionals' experience and previous scientific knowledge contribute to a better understanding of HC post-divorce co-parenting? Individual face to face interviews were conducted and analyzed regarding the qualitative theoretical reasoning of thematic analysis. Results: Analysis allowed us to highlight how four main axes are related to HC post-divorce co-parenting: (1) Parents for life, (2) Acting in the child's best interests, (3) Managing disagreements, and (4) Healing the separation. Conclusion: Our findings capture high conflict post-divorce co-parenting as a multidimensional dynamic process. As such, dealing with co-parenting disagreements must be understood as a moment in a process that is influenced by, and influences, other dimensions. Implications: Interventions must consider the four dimensions and their reciprocal interactions. The essential elements underlying parents' difficulties may reside at a multiplicity of levels: inter-relational, contextual, and intrapsychic. Each level contains key potential factors in understanding these families, and in formulating intervention guidelines.

19.
Microsc Microanal ; : 1-17, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644675

RESUMO

Over the last few years, a new mode for imaging in the scanning transmission electron microscope (STEM) has gained attention as it permits the direct visualization of sample conductivity and electrical connectivity. When the electron beam (e-beam) is focused on the sample in the STEM, secondary electrons (SEs) are generated. If the sample is conductive and electrically connected to an amplifier, the SE current can be measured as a function of the e-beam position. This scenario is similar to the better-known scanning electron microscopy-based technique, electron beam-induced current imaging, except that the signal in the STEM is generated by the emission of SEs, hence the name secondary electron e-beam-induced current (SEEBIC), and in this case, the current flows in the opposite direction. Here, we provide a brief review of recent work in this area, examine the various contrast generation mechanisms associated with SEEBIC, and illustrate its use for the characterization of graphene nanoribbon devices.

20.
Proc Natl Acad Sci U S A ; 119(27): e2119015119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759664

RESUMO

Controlled electrobreakdown of graphene is important for the fabrication of stable nanometer-size tunnel gaps, large-scale graphene quantum dots, and nanoscale resistive switches, etc. However, owing to the complex thermal, electronic, and electrochemical processes at the nanoscale that dictate the rupture of graphene, it is difficult to generate conclusions from individual devices. We describe here a way to explore the statistical signature of the graphene electrobreakdown process. Such analysis tells us that feedback-controlled electrobreakdown of graphene in the air first shows signs of joule heating-induced cleaning followed by rupturing of the graphene lattice that is manifested by the lowering of its conductance. We show that when the conductance of the graphene becomes smaller than around 0.1 G0, the effective graphene notch width starts to decrease exponentially slower with time. Further, we show how this signature gets modified as we change the environment and or the substrate. Using statistical analysis, we show that the electrobreakdown under a high vacuum could lead to substrate modification and resistive-switching behavior, without the application of any electroforming voltage. This is attributed to the formation of a semiconducting filament that makes a Schottky barrier with the graphene. We also provide here the statistically extracted Schottky barrier threshold voltages for various substrate studies. Such analysis not only gives a better understanding of the electrobreakdown of graphene but also can serve as a tool in the future for single-molecule diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...