Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 1): 8-16, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598351

RESUMO

Bacteria exploit specialized secretion systems to assist in competition for resources, in collaboration and in communication. Here, a protocol for the recombinant production, purification and crystallization of a protein linked to the Acinetobacter baumannii type VI secretion system is provided. A high-resolution structure of this trimeric protein is reported, revealing the characteristic dual ß-α-ß subunit fold typical of longer subunit members of the tautomerase superfamily. The protein does not appear to be toxic to bacteria or yeast under the conditions tested. The possible biological role of this protein is discussed.


Assuntos
Acinetobacter baumannii , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Acinetobacter baumannii/genética , Cristalografia por Raios X , Sistemas de Secreção Bacterianos , Bactérias
2.
PLoS Pathog ; 12(4): e1005566, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073846

RESUMO

Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/metabolismo , Macrófagos/microbiologia , Saccharomyces cerevisiae/metabolismo , Virulência/fisiologia , Animais , Western Blotting , Metabolismo dos Carboidratos , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...