Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38063963

RESUMO

To address concerns regarding the potential health risks associated with residual chemicals in food products, this study aimed to assess the concentrations of residual Benomyl, Malathion, and Diazinon in cucumbers and evaluate the associated health risks for consumers. This descriptive study involved the collection of 100 cucumber samples from both field and greenhouse cultivation in Mazandaran Province. These samples were subsequently sent to the laboratory for analysis. Following sample preparation and digestion, we determined the levels of residual Malathion, Benomyl, and Diazinon using HPLC. The results showed an average residual Malathion concentration of 2.1 ± 0.04 mg/kg in field-grown cucumbers and 2.04 ± 1.5 mg/kg in greenhouse-cultivated cucumbers. Meanwhile, the average residual Diazinon concentration was 5.1 ± 0.2 mg/kg in field samples and 4.99 ± 3.23 mg/kg in greenhouse samples. The average concentrations of residual Benomyl were found to be 0.94 ± 0.65 mg/kg in field-grown cucumbers and 0.39 ± 0.2 mg/kg in greenhouse-cultivated cucumbers. Furthermore, a health risk assessment model was employed to evaluate the cumulative risk of these residual pesticides in cucumbers. The analysis revealed that residual Benomyl levels ranged from 0 to 24.33 mg/kg, while Malathion ranged from 0 to 9.25 mg/kg, and Diazinon ranged from 0 to 6.8 mg/kg. Notably, in some areas, the average concentration of all three pesticides exceeded the guidelines set by the WHO and the European Union. Additionally, the cumulative risk assessment (represented by MOET value of 2655) indicated that the combined presence of residual Malathion, Benomyl, and Diazinon in field-cultivated cucumbers posed a health risk. Based on current per capita consumption rates, the study's health risk index results raised concerns about the safety of consuming these residual byproducts. Given the growing use of chemicals in agricultural and horticultural practices, it is imperative to monitor residual pesticides to assess dietary intake and ensure consumer safety in food production.

2.
Int J Mol Cell Med ; 1(4): 209-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24551780

RESUMO

Pseudomonas aeruginosa is one of the most important pathogens that causes nosocomial infections and shows high level of antibiotic resistance. Integrons are one of the transposable elements in bacteria and their role in antibiotic resistance has been well demonstrated. The aim of this study was a molecular characterization of the integron genes and the determination of the resistance or sensitivity pattern to ceftizoxime, cephizoxim. cephotaxim, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibiotics in P. aeruginosa strains isolated from Intensive Care Units (ICU), Shahid Beheshti Hospital, North of Iran. This cross-sectional study was performed from 2011 to 2012. Totally, fifty four P. aeruginosa strains were isolated from ICU at Shahid-Beheshti hospital, Babol, North of Iran. The bacteria were diagnosed based on mobility, pigment production, growth in 42(0) C, oxidase and catalase tests. PCR analysis was carried out to detect integron genes using hep 35 and hep 36 primers. Also, disk diffusion method was performed to evaluate antibiotic susceptibility of the bacteria using ceftizoxime, ceftazidime, cephotaxime, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibacterial reagents. This study revealed that 20 (37%) P. aeruginosa isolates had integron genes. The antibiotic susceptibility test showed that 53 (98.1%) of the isolates were multidrug-resistant. 12 out of 54 isolated bacteria were resistant to all antibiotics tested. All bacteria were resistant to cefepime and the highest resistance rate was seen to ceftizoxime 92.6% followed by cefazolin 92.3%. The lowest resistance rate was observed to ciprofloxacin 38.9%, ofloxacin 44.4%, amikacin 46.3% and ticarcillin 48.1%. According to this study, P. aeruginosa isolates showed high level of antibiotic resistance and the presence of integrons in these strains can explain the influence of these genes in resistance creation. There was a significant association between resistance to cefotaxime, amikacin, ofloxacin, imipenem, ticarcillin, gentamicin and the presence of integrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...