Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 142(21): 3746-57, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26534986

RESUMO

Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex.


Assuntos
Giro do Cíngulo/metabolismo , Proteínas de Homeodomínio/metabolismo , Neuropilina-1/metabolismo , Fatores de Transcrição/metabolismo , Agenesia do Corpo Caloso/embriologia , Agenesia do Corpo Caloso/genética , Animais , Axônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Semaforinas/metabolismo
2.
Neural Dev ; 10: 10, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879444

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. RESULTS: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. CONCLUSIONS: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/patologia , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Envelhecimento/patologia , Animais , Comissura Anterior/patologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Fórnice/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes Neurológicos , Fenótipo , Córtex Somatossensorial/patologia , Córtex Visual/patologia
3.
Neuroimage ; 87: 465-75, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24060319

RESUMO

We describe the visualization of the barrel cortex of the primary somatosensory area (S1) of ex vivo adult mouse brain with short-tracks track density imaging (stTDI). stTDI produced much higher definition of barrel structures than conventional fractional anisotropy (FA), directionally-encoded color FA maps, spin-echo T1- and T2-weighted imaging and gradient echo T1/T2*-weighted imaging. 3D high angular resolution diffusion imaging (HARDI) data were acquired at 48 micron isotropic resolution for a (3mm)(3) block of cortex containing the barrel field and reconstructed using stTDI at 10 micron isotropic resolution. HARDI data were also acquired at 100 micron isotropic resolution to image the whole brain and reconstructed using stTDI at 20 micron isotropic resolution. The 10 micron resolution stTDI maps showed exceptionally clear delineation of barrel structures. Individual barrels could also be distinguished in the 20 micron stTDI maps but the septa separating the individual barrels appeared thicker compared to the 10 micron maps, indicating that the ability of stTDI to produce high quality structural delineation is dependent upon acquisition resolution. Close homology was observed between the barrel structure delineated using stTDI and reconstructed histological data from the same samples. stTDI also detects barrel deletions in the posterior medial barrel sub-field in mice with infraorbital nerve cuts. The results demonstrate that stTDI is a novel imaging technique that enables three-dimensional characterization of complex structures such as the barrels in S1 and provides an important complementary non-invasive imaging tool for studying synaptic connectivity, development and plasticity of the sensory system.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Somatossensorial/anatomia & histologia , Animais , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Vibrissas/inervação
4.
Proc Natl Acad Sci U S A ; 110(47): 19131-6, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24194544

RESUMO

Opitz syndrome (OS) is a genetic neurological disorder. The gene responsible for the X-linked form of OS, Midline-1 (MID1), encodes an E3 ubiquitin ligase that regulates the degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). However, how Mid1 functions during neural development is largely unknown. In this study, we provide data from in vitro and in vivo experiments suggesting that silencing Mid1 in developing neurons promotes axon growth and branch formation, resulting in a disruption of callosal axon projections in the contralateral cortex. In addition, a similar phenotype of axonal development was observed in the Mid1 knockout mouse. This defect was largely due to the accumulation of PP2Ac in Mid1-depleted cells as further down-regulation of PP2Ac rescued the axonal phenotype. Together, these data demonstrate that Mid1-dependent PP2Ac turnover is important for normal axonal development and that dysregulation of this process may contribute to the underlying cause of OS.


Assuntos
Axônios/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Cones de Crescimento/fisiologia , Proteína Fosfatase 2/metabolismo , Proteínas/metabolismo , Animais , Fissura Palatina/fisiopatologia , Esôfago/anormalidades , Esôfago/fisiopatologia , Técnicas de Silenciamento de Genes , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Hipertelorismo/fisiopatologia , Hipospadia/fisiopatologia , Immunoblotting , Hibridização In Situ , Camundongos , Camundongos Knockout , Proteínas/genética , Proteólise , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Imagem com Lapso de Tempo , Ubiquitina-Proteína Ligases
5.
Behav Brain Res ; 257: 253-64, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24103642

RESUMO

Exposure to sodium valproate (VPA) in utero increases the risk of language impairment and a diagnosis of autism spectrum disorder (ASD). Mice exposed to VPA while in utero have also shown postnatal social deficits. Inhibition of histone deacetylase (HDAC) is one of VPA's many biological effects. The main objective of this study was to test the hypothesis that HDAC inhibition causes these behavioral outcomes following prenatal VPA exposure in mice. We exposed embryonic mice to VPA, the HDAC inhibitor trichostatin A (TSA), or vehicle controls. TSA (1mg/kg) inhibited HDAC in embryonic tissue at a level comparable to 600 mg/kg VPA, resulting in significant increases in histone H3 and H4 acetylation, and histone H3 lysine 4 tri-methylation. Postnatally, decreases in ultrasonic vocalization, olfactory motivation and sociability were observed in TSA and VPA-exposed pups. Treated mice exhibited elevated digging and grooming suggestive of mild restrictive and repetitive behaviors. Olfactory social preference, social novelty and habituation were normal. Together, these data indicate that embryonic HDAC inhibition alone can cause abnormal social behaviors in mice. This result serves as a molecular understanding of infant outcomes following mild VPA exposure in utero.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transtornos do Comportamento Social/etiologia , Ácido Valproico/administração & dosagem , Animais , Animais Recém-Nascidos , Embrião de Mamíferos , Feminino , Ácidos Hidroxâmicos/farmacologia , Relações Interpessoais , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Gravidez , Teste de Desempenho do Rota-Rod , Olfato/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos
6.
J Neurosci ; 32(11): 3865-76, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423107

RESUMO

Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.


Assuntos
Agenesia do Corpo Caloso/genética , Modelos Animais de Doenças , Neuropatia Hereditária Motora e Sensorial/genética , Fenótipo , Simportadores/deficiência , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/patologia , Animais , Feminino , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Simportadores/biossíntese , Simportadores/genética
7.
Dev Biol ; 365(1): 36-49, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22349628

RESUMO

The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.


Assuntos
Corpo Caloso/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neuroglia/fisiologia , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia , Transdução de Sinais , Proteínas Roundabout
8.
Dev Dyn ; 240(6): 1586-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21491541

RESUMO

The fibroblast growth factor receptor 3 (Fgfr3) is expressed in a rostral(low) to caudal(high) gradient in the developing cerebral cortex. Therefore, we hypothesized that Fgfr3 contributes to the correct morphology and connectivity of the caudal cortex. Overall, the forebrain structures appeared normal in Fgfr3(-/-) mice. However, cortical and hippocampal volumes were reduced by 26.7% and 16.3%, respectively. Hypoplasia was particularly evident in the caudo-ventral region of the telencephalon where proliferation was mildly decreased at embryonic day 18.5. Dysplasia of GABAergic neurons in the amygdala and piriform cortex was seen following GAD67 immunohistochemistry. Dye-tracing studies and diffusion magnetic resonance imaging and tractography detected a subtle thalamocortical tract deficit, and significant decreases in the stria terminalis and lateral arms of the anterior commissure. These results indicate the subtle role of Fgfr3 in formation of caudal regions of the telencephalon affecting some brain projections.


Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Telencéfalo/embriologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação para Baixo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Hipocampo/embriologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Tamanho do Órgão/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Telencéfalo/metabolismo
9.
J Comp Neurol ; 518(18): 3645-61, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20653027

RESUMO

Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2(-/-). Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation.


Assuntos
Telencéfalo/anormalidades , Telencéfalo/anatomia & histologia , Telencéfalo/embriologia , Animais , Imagem de Tensor de Difusão , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFI/genética , Telencéfalo/metabolismo , Fatores de Transcrição/genética
10.
J Neurosci ; 30(27): 9127-39, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20610746

RESUMO

The balance between self-renewal and differentiation of neural progenitor cells is an absolute requirement for the correct formation of the nervous system. Much is known about both the pathways involved in progenitor cell self-renewal, such as Notch signaling, and the expression of genes that initiate progenitor differentiation. However, whether these fundamental processes are mechanistically linked, and specifically how repression of progenitor self-renewal pathways occurs, is poorly understood. Nuclear factor I A (Nfia), a gene known to regulate spinal cord and neocortical development, has recently been implicated as acting downstream of Notch to initiate the expression of astrocyte-specific genes within the cortex. Here we demonstrate that, in addition to activating the expression of astrocyte-specific genes, Nfia also downregulates the activity of the Notch signaling pathway via repression of the key Notch effector Hes1. These data provide a significant conceptual advance in our understanding of neural progenitor differentiation, revealing that a single transcription factor can control both the activation of differentiation genes and the repression of the self-renewal genes, thereby acting as a pivotal regulator of the balance between progenitor and differentiated cell states.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição NFI/fisiologia , Células-Tronco/fisiologia , Telencéfalo/citologia , Fatores Etários , Análise de Variância , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Imunoprecipitação da Cromatina/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries/métodos , Mutação/genética , Fatores de Transcrição NFI/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Telencéfalo/embriologia , Fatores de Transcrição HES-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Biochim Biophys Acta ; 1801(8): 846-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20580937

RESUMO

Several lines of evidence support a strong relationship between cholesterol and Alzheimer's disease pathogenesis. Membrane cholesterol is known to modulate amyloid precursor protein (APP) endocytosis and amyloid-beta (Abeta) secretion. Here we show in a human cell line model of endocytosis (HEK293 cells) that cholesterol exerts these effects in a dose-dependent and linear manner, over a wide range of concentrations (-40% to +40% variations of plasma membrane cholesterol induced by methyl-beta-cyclodextrin (MBCD) and MBCD-cholesterol complex respectively). We found that the gradual effect of cholesterol is inhibited by small interference RNA-mediated downregulation of clathrin. Modulation of clathrin-mediated APP endocytosis by cholesterol was further demonstrated using mutants of proteins involved in the formation of early endosomes (dynamin2, Eps15 and Rab5). Importantly we show that membrane proteins other than APP are not affected by cholesterol to the same extent. Indeed clathrin-dependent endocytosis of transferrin and cannabinoid1 receptors as well as internalization of surface proteins labelled with a biotin derivative (sulfo-NHS-SS-biotin) were not sensitive to variations of plasma membrane cholesterol from -40% to 40%. In conclusion clathrin-dependent APP endocytosis appears to be very sensitive to the levels of membrane cholesterol. These results suggest that cholesterol increase in AD could be responsible for the enhanced internalization of clathrin-, dynamin2-, Eps15- and Rab5-dependent endocytosis of APP and the ensuing overproduction of Abeta.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , Colesterol/farmacologia , Clatrina/metabolismo , Clatrina/fisiologia , Dinamina II/metabolismo , Dinamina II/fisiologia , Endocitose/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Via Secretória/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/fisiologia
12.
Neuroimage ; 51(3): 1027-36, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20303410

RESUMO

Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyze three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution threshold, and wholebrain versus region of interest seeding. Using anatomically well-defined corticothalamic pathways, we show how projection maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner.


Assuntos
Córtex Cerebral/citologia , Imagem de Tensor de Difusão/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Neurônios/citologia , Tálamo/citologia , Animais , Simulação por Computador , Camundongos , Camundongos Knockout , Modelos Anatômicos , Vias Neurais/citologia
13.
Neural Dev ; 4: 43, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19961580

RESUMO

BACKGROUND: Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. RESULTS: Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. CONCLUSION: The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our results indicate that in addition to regulating the development of midline glial populations, Nfib also regulates the expression of neuropilin 1 within the cingulate cortex. Collectively, these data indicate that defects in midline glia and cingulate cortex neurons are associated with the callosal dysgenesis seen in Nfib-deficient mice, and provide insight into how the development of these cellular populations is controlled at a molecular level.


Assuntos
Corpo Caloso/embriologia , Corpo Caloso/fisiopatologia , Fatores de Transcrição NFI/metabolismo , Neocórtex/embriologia , Neocórtex/fisiopatologia , Animais , Apoptose/fisiologia , Axônios/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Giro do Cíngulo/embriologia , Giro do Cíngulo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Neuropilina-1/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/fisiopatologia , Células-Tronco/fisiologia
14.
J Neurosci Res ; 87(14): 3143-52, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19472221

RESUMO

Down's syndrome neurophenotypes are characterized by mental retardation and a decreased brain volume. To identify whether deficits in proliferation could be responsible for this phenotype, neural progenitor cells were isolated from the developing E14 neocortex of Down's syndrome partial trisomy Ts1Cje mice and euploid (WT) littermates and grown as neurospheres. Ts1Cje neural progenitors proliferated at a slower rate, because of a longer cell cycle, and a greater number of cells were positive for glial fibrillary acidic protein. An increase in cell death was also noted. Gene expression profiles of neural progenitor cells from Ts1Cje and WT showed that 54% of triploid genes had expression ratios (Ts1Cje/WT) significantly greater than the expected diploid gene ratio of 1.0. Some diploid genes associated with proliferation, differentiation, and glial function were dysregulated. Interestingly, proliferation and gene expression dysregulation detected in the Ts1Cje mice did not require overexpression of the chromosome 21 genes amyloid precursor protein (App) and soluble superoxide dismutase 1 (Sod1).


Assuntos
Proliferação de Células , Expressão Gênica/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Células-Tronco/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Síndrome de Down , Perfilação da Expressão Gênica , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Microesferas , Neocórtex/fisiopatologia , Neuroglia/patologia , Neuroglia/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/fisiologia
15.
BMC Genomics ; 10: 138, 2009 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19331679

RESUMO

BACKGROUND: Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. RESULTS: We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. CONCLUSION: High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes.


Assuntos
Cerebelo/anormalidades , Cerebelo/metabolismo , Síndrome de Down/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Cerebelo/crescimento & desenvolvimento , Cromossomos , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Trissomia
16.
J Comp Neurol ; 508(3): 385-401, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18335562

RESUMO

Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and Nfix are highly expressed in the developing mouse brain. Nfia and Nfib knockout mice display profound defects in the development of midline glial populations and the development of forebrain commissures (das Neves et al. [1999] Proc Natl Acad Sci U S A 96:11946-11951; Shu et al. [2003] J Neurosci 23:203-212; Steele-Perkins et al. [2005] Mol Cell Biol 25:685-698). These findings suggest that Nfi genes may regulate the substrate over which the commissural axons grow to reach targets in the contralateral hemisphere. However, these genes are also expressed in the cerebral cortex and, thus, it is important to assess whether this expression correlates with a cell-autonomous role in cortical development. Here we detail the protein expression of NFIA and NFIB during embryonic and postnatal mouse forebrain development. We find that both NFIA and NFIB are expressed in the deep cortical layers and subplate prenatally and display dynamic expression patterns postnatally. Both genes are also highly expressed in the developing hippocampus and in the diencephalon. We also find that principally neither NFIA nor NFIB are expressed in callosally projecting neurons postnatally, emphasizing the role for midline glial cell populations in commissure formation. However, a large proportion of laterally projecting neurons express both NFIA and NFIB, indicating a possible cell-autonomous role for these transcription factors in corticospinal neuron development. Collectively, these data suggest that, in addition to regulating the formation of axon guidance substrates, these genes also have cell-autonomous roles in cortical development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição NFI/metabolismo , Prosencéfalo , Animais , Animais Recém-Nascidos , Células Cultivadas , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFI/genética , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo
17.
Int J Dev Neurosci ; 25(8): 539-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18023319

RESUMO

The recent discovery that cellular proliferation was reduced in aneuploid haploid yeast supports a long-standing argument that the developmental neurophenotype of Down syndrome is not uniquely a result of the effects of increased gene dosage. Instead, some phenotypic outcomes appear to resemble those caused by disrupted cellular homeostasis induced by aneuploidy. Decreased cellular proliferation has been identified in the cerebellum and hippocampus of Down syndrome mouse models and in the post-mortem hippocampus and germinal matrix of Down syndrome fetuses. Consistent with predominantly stochastic gene expression and increased energy demands induced by aneuploidy, the "buffering" canalization processes in Down syndrome would be reduced thereby giving rise to increased variance to less stable developmental pathways such as proliferation. The nature and extent of phenotypes due to reduced canalization would depend on the tissue; which is also a question for future research to address. A conceptual model is presented here to demonstrate the nature of influences affecting phenotypes. Ultimately, in Down syndrome, exigent periods of neurodevelopment increasingly appear to reflect the burden of disrupted homeostasis.


Assuntos
Síndrome de Down/genética , Leveduras/genética , Aneuploidia , Animais , Proliferação de Células , Síndrome de Down/patologia , Dosagem de Genes , Humanos
18.
Prog Neurobiol ; 82(2): 87-94, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17408845

RESUMO

Down syndrome (DS) is a chromosomal disorder whereby genes on chromosome 21 are present in three copies. This gene copy imbalance is thought to be responsible for a number of debilitating conditions experienced by individuals with DS. Amongst these is a reduced cerebellar volume, or cerebellar hypoplasia, which is believed to contribute to the perturbation of fine motor control. Mouse models of DS (such as Ts65Dn, Ts1Cje, Tc1) exhibit a cerebellar phenotype similar to that of individuals with DS and which primarily manifests as a disruption of the density of the granule cell layer. Dissecting which of the three-copy genes are responsible for this phenotype (the primary gene dosage effect) has been a task undertaken by researchers working with various segmental trisomies and transgenic mice. It is generally agreed that, when expressed, three-copy genes of trisomic mice are expressed at around 1.5 times that of the same genes in euploid (wild-type) mice. However, amongst these studies there does not appear to be a consensus on the nature and extent of differential expression of two-copy genes in trisomic mice-the secondary dosage effect. Much of this variation may have to do with the stage of development investigated and the nature and complexity of the tissue (i.e. whole brain versus the cerebellum). The recent discovery that trisomic granule cell precursors are less sensitive to sonic hedgehog-induced proliferation has opened up another avenue for the identification of three-copy genes responsible for the cerebellar phenotype. It is hoped that further investigation of this phenomenon, together with new mouse segmental trisomies and transgenics, will reveal the cause of the proliferation deficit and allow for potential treatment.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Síndrome de Down/genética , Síndrome de Down/patologia , Dosagem de Genes , Animais , Modelos Animais de Doenças , Humanos , Camundongos
19.
Stroke ; 36(6): 1241-6, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15879331

RESUMO

BACKGROUND AND PURPOSE: In contrast to tissue-type plasminogen activator (tPA), vampire bat (Desmodus rotundus) salivary plasminogen activator (desmoteplase [DSPA]) does not promote excitotoxic injury when injected directly into the brain. We have compared the excitotoxic effects of intravenously delivered tPA and DSPA and determined whether DSPA can antagonize the neurotoxic and calcium enhancing effects of tPA. METHODS: The brain striatal region of wild-type c57 Black 6 mice was stereotaxically injected with N-methyl-d-Aspartate (NMDA); 24 hour later, mice received an intravenous injection of tPA or DSPA (10 mg/kg) and lesion size was assessed after 24 hours. Cell death and calcium mobilization studies were performed using cultures of primary murine cortical neurons. RESULTS: NMDA-mediated injury was increased after intravenous administration of tPA, whereas no additional toxicity was seen after administration of DSPA. Unlike DSPA, tPA enhanced NMDA-induced cell death and the NMDA-mediated increase in intracellular calcium levels in vitro. Moreover, the enhancing effects of tPA were blocked by DSPA. CONCLUSIONS: Intravenous administration of tPA promotes excitotoxic injury, raising the possibility that leakage of tPA from the vasculature into the parenchyma contributes to brain damage. The lack of such toxicity by DSPA further encourages its use as a thrombolytic agent in the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/efeitos dos fármacos , Ativadores de Plasminogênio/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Cálcio/metabolismo , Morte Celular , Fibrinolíticos/uso terapêutico , Imuno-Histoquímica , Infusões Intravenosas , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Neurônios/patologia , Ativadores de Plasminogênio/administração & dosagem , Terapia Trombolítica/métodos , Fatores de Tempo , Ativador de Plasminogênio Tecidual/administração & dosagem
20.
Eur J Pharmacol ; 476(1-2): 3-16, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12969743

RESUMO

Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling reveal some efficacy of mGlu receptor ligands against fully kindled limbic seizures. In genetic mouse models, mGlu1/5 antagonists and mGlu2/3 agonists are effective against absence seizures. Thus, antagonists at group I mGlu receptors and agonists at groups II and III mGlu receptors are potential antiepileptic agents, but their clinical usefulness will depend on their acute and chronic side effects. Potential also exists for combining mGlu receptor ligands with other glutamatergic and non-glutamatergic agents to produce an enhanced anticonvulsant effect. This review also discusses what is known about mGlu receptor expression and function in rodent epilepsy models and human epileptic conditions.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Anticonvulsivantes/farmacologia , Epilepsia/metabolismo , Humanos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...