Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(9): 096102, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033050

RESUMO

A recent theoretical study [Phys. Rev. B 85, 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d(3z2-r2) orbital, which is different from the planar case.

2.
Adv Mater ; 25(34): 4739-45, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23847010

RESUMO

Exchange bias coupling at the multiferroic- ferromagnetic interface in BiFeO3 /La0.7 Sr0.3 MnO3 heterostructures exhibits a critical thickness for ultrathin BiFeO3 layers of 5 unit cells (2 nm). Linear dichroism measurements demonstrate the dependence on the BiFeO3 layer thickness with a strong reduction for ultrathin layers, indicating diminished antiferromagnetic ordering that prevents interfacial exchange bias coupling.

3.
Phys Rev Lett ; 107(21): 217201, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181916

RESUMO

Using polarized neutron reflectometry we measured the neutron spin-dependent reflectivity from four LaAlO(3)/SrTiO(3) superlattices. Our results imply that the upper limit for the magnetization averaged over the lateral dimensions of the sample induced by an 11 T magnetic field at 1.7 K is less than 2 G. SQUID magnetometry of the neutron superlattice samples sporadically finds an enhanced moment, possibly due to experimental artifacts. These observations set important restrictions on theories which imply a strongly enhanced magnetism at the interface between LaAlO(3) and SrTiO(3).

4.
Nature ; 425(6955): 271-4, 2003 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-13679910

RESUMO

Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.

5.
Phys Rev Lett ; 91(3): 037004, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12906442

RESUMO

We present the c-axis optical conductivity sigma(1c)(omega,T) of underdoped (x=0.12) and optimally doped (x=0.15) La2-xSrxCuO4 from 4 meV to 1.8 eV obtained by a combination of reflectivity and transmission spectra. In addition to the opening of the superconducting gap, we observe an increase of conductivity above the gap up to 270 meV with a maximal effect at about 120 meV. This may indicate a new collective mode at a surprisingly large energy scale. The Ferrell-Glover-Tinkham sum rule is violated for both doping levels. Although the relative value of the violation is much larger for the under-doped sample, the absolute increase of the low-frequency spectral weight, including that of the condensate, is higher in the optimally doped regime. Our results resemble in many respects the observations in YBa(2)Cu(3)O(7-delta).

6.
Science ; 295(5563): 2239-41, 2002 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-11910103

RESUMO

Optical data are reported on a spectral weight transfer over a broad frequency range of Bi2Sr2CaCu2O8+delta, when this material became superconducting. Using spectroscopic ellipsometry, we observed the removal of a small amount of spectral weight in a broad frequency band from 10(4) cm(-1) to at least 2 x 10(4) cm(-1), due to the onset of superconductivity. We observed a blue shift of the ab-plane plasma frequency when the material became superconducting, indicating that the spectral weight was transferred to the infrared range. Our observations are in agreement with models in which superconductivity is accompanied by an increased charge carrier spectral weight. The measured spectral weight transfer is large enough to account for the condensation energy in these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...