Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38789824

RESUMO

Otoacoustic emissions (OAEs) are generated in the cochlea and recorded in the ear canal either as a time domain waveform or as a collection of complex responses to tones in the frequency domain (Probst et al. J Account Soc Am 89:2027-2067, 1991). They are typically represented either in their original acquisition domain or in its Fourier-conjugated domain. Round-trip excursions to the conjugated domain are often used to perform filtering operations in the computationally simplest way, exploiting the convolution theorem. OAE signals consist of the superposition of backward waves generated in different cochlear regions by different generation mechanisms, over a wide frequency range. The cochlear scaling symmetry (cochlear physics is the same at all frequency scales), which approximately holds in the human cochlea, leaves its fingerprints in the mathematical properties of OAE signals. According to a generally accepted taxonomy (Sher and Guinan Jr, J Acoust Soc Am 105:782-798, 1999), OAEs are generated either by wave-fixed sources, moving with frequency according with the cochlear scaling (as in nonlinear distortion) or by place-fixed sources (as in coherent reflection by roughness). If scaling symmetry holds, the two generation mechanisms yield OAEs with different phase gradient delay: almost null for wave-fixed sources, and long (and scaling as 1/f) for place-fixed sources. Thus, the most effective representation of OAE signals is often that respecting the cochlear scale-invariance, such as the time-frequency domain representation provided by the wavelet transform. In the time-frequency domain, the elaborate spectra or waveforms yielded by the superposition of OAE components from different generation mechanisms assume a much clearer 2-D pattern, with each component localized in a specific and predictable region. The wavelet representation of OAE signals is optimal both for visualization purposes and for designing filters that effectively separate different OAE components, improving both the specificity and the sensitivity of OAE-based applications. Indeed, different OAE components have different physiological meanings, and filtering dramatically improves the signal-to-noise ratio.

2.
Neurol Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561486

RESUMO

BACKGROUND: Sensorial non-motor symptoms (NMSs) in Parkinson's disease (PD) still lack appropriate investigation in clinical practice. This study aimed to assess if and to what extent auditory dysfunction is associated with other NMSs in PD and its impact on patient's quality of life (QoL). METHODS: We selected patients with idiopathic PD, without other concomitant neurological diseases, dementia, or diagnosis of any audiological/vestibular disease. Demographic and clinical data were collected. Patients underwent otoscopic examination, audiological testing with pure tone audiometry (PTA) and distortion product otoacoustic emissions (DPOAEs) and completed Non-Motor Symptoms Scale (NMSS) and Parkinson's Disease Questionnaires-39 (PDQ-39). ANCOVA and partial correlation analysis have been used for statistical analysis. RESULTS: 60 patients were enrolled and completed PTA and DPOAEs. 32 patients with hearing impairment (HI), assessed by PTA, (hearing threshold ≥ 25 dB) showed similar disease duration, motor impairment, and staging, compared to patients without HI, but higher scores both in NMSS and in PDQ-39, except for cardiovascular (CV), gastrointestinal (GI), urogenital (U) and sexual function (SF) of NMSS. In addition, DPOAEs showed a significant correlation with higher scores both in NMSS and PDQ-39, except for CV, SF, GI, U and perceptual problem subdomains of NMSS. CONCLUSION: This study demonstrated that PD patients with HI have a greater burden of NMS and lower related QoL and functioning. Our results highlight the importance to reconsider HI as a NMS, in parallel with the others. HI evaluation, even in asymptomatic patients, may reveal a wider pathology with a worse QoL.

3.
AIP Conf Proc ; 3062(1)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38516506

RESUMO

Two hydrodynamic effects are introduced in the standard transmission-line formalism, the focusing of the pressure and fluid velocity fields near the basilar membrane and the viscous damping at the fluid-basilar membrane interface, which significantly affect the cochlear response in the short-wave region. In this region, in which the wavelength is shorter than the cochlear duct height, only a layer of fluid of order of the wavelength is effectively involved in the traveling wave. This has been interpreted [8] as a reduced fluid contribution to the system inertia in the peak region, which is a viewpoint common to the 3-D FEM solutions. In this paper we propose an alternative approach, from a slightly different physical viewpoint. Invoking the fluid flux conservation along the traveling wave propagation direction, we can derive a rigorous propagation equation for the pressure integrated along the vertical axis. Consequently, the relation between the average pressure and the local pressure [4] at the fluid-BM interface can be written. The local pressure is amplified by a factor dependent on the local wavenumber with respect to the average pressure, a phenomenon we refer to as "fluid focusing", which plays a relevant role in the BM total amplification gain. This interpretation of the hydrodynamic boost to the pressure provides a physical justification to the strategy [10] of fitting the BM admittance with a polynomial containing both a conjugated pole and a zero. In the short-wave region, the sharp gradients of the velocity field yield a second important effect, a damping force on the BM motion, proportional to the local wavenumber, which stabilizes active models and shifts the peak of the response towards the base, with respect to the resonant place. This way, the peaked BM response is not that of a proper resonance, corresponding to a sharp maximum of the admittance, but rather a focusing-driven growth toward the resonant place, which is "aborted" before reaching it by the sharply increasing viscous losses. The large values of the wavenumber that ensure strong focusing are ultimately fueled, against viscosity, by the nonlinear OHC mechanism, hence the otherwise puzzling observation of a wide nonlinear gain dynamics with almost level-independent admittance.

4.
Front Toxicol ; 6: 1323681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283866

RESUMO

Introduction: Zinc oxide nanoparticles (ZnO NPs) have been engineered and are largely used in material science and industry. This large and increasing use justifies a careful study about the toxicity of this material for human subjects. The concerns regard also the reproductive toxicity and the fetotoxicity. Materials and methods: The effect of the exposure to ZnO NPs on the cochlear function was studied in a group of pregnant CD1 mice and in their offspring. This study is part of a larger toxicological study about the toxicity of ZnO NPs during pregnancy. Four groups were analyzed and compared, exposed and non-exposed dams and their offspring. The cochlear function was quantitatively assessed by means of Distortion Product Otoacoustic Emissions (DPOAEs). Results and discussion: A large statistically significant difference was found between the non-exposed dams offspring and the exposed dams offspring (p = 1.6 · 10-3), whose DPOAE levels were significantly lower than those of non-exposed dams offspring and comparable to those of the adults. The DPOAE levels of the exposed and non-exposed dams were very low and not significantly different. This occurrence is related to the fact that these mice encounter a rapid aging process. Conclusion: Our findings show that maternal exposure to ZnO NPs does not reflect in overt toxicity on fetal development nor impair offspring birth, however it may damage the nervous tissue of the inner ear in the offspring. Other studies should confirm this result and identify the mechanisms through which ZnO NPs may affect ear development.

5.
JASA Express Lett ; 3(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787697

RESUMO

Dopamine depletion affects several aspects of hearing function. Previous work [Wu, Yi, Manca, Javaid, Lauer, and Glowatzki, eLife 9, e52419 (2020)] demonstrated the role of dopamine in reducing the firing rates of inner ear cells, which is thought to decrease synaptic excitotoxicity. Thus, a lack of dopamine could indirectly increase acoustic stimulation of medial olivocochlear efferents. To investigate that, here we studied contralateral suppression of distortion product otoacoustic emissions in a population of Parkinsonian patients, compared to an age-matched control group, both audiometrically tested. To rule out activation of the acoustic reflex, middle ear impedance was monitored during testing. The results show significantly stronger contralateral suppression in the patient group.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Dopamina , Emissões Otoacústicas Espontâneas , Audição , Estimulação Acústica
6.
Brain Commun ; 5(2): fcad075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006327

RESUMO

In a previous study, we observed: (i) significant hearing function impairment, assessed with pure tone audiometry and distortion product otoacoustic emissions, in patients with Parkinson's disease, compared with a matched control group, and (ii) lateralization of the hearing dysfunction, worse on the side affected by more pronounced Parkinson's disease motor symptoms. This study investigates the association between the basal ganglia dopamine transporter availability and the hearing function in Parkinson's disease patients, focusing also on the lateralization of both dysfunctions, with respect to that of the motor symptoms, and introducing a further distinction between patients with left-sided and right-sided predominant motor symptoms. Patients with right-handed Parkinson's disease with a recent estimation of 123I-FP-CIT striatal uptake were audiologically tested with pure tone audiometry and distortion product otoacoustic emissions. Thirty-nine patients were included in the study. A statistically significant association was found, in the left-side predominant group only, between the distortion product otoacoustic emission levels and the contralateral dopamine transporter availability, and between the hearing threshold and the dopamine transporter availability difference between the ipsi- and the contralateral sides. The hearing impairment lateralization correlated to the motor symptom asymmetry was found significant only in the left-side predominant patients. The association between hearing function and basal ganglia dopamine transporter availability supports the hypothesis that the peripheral hearing function decline associated with dopamine depletion is involved in Parkinson's disease development, with a significant difference between patients with left- and right-sided predominant motor symptoms. These findings also suggest that peripheral hearing function evaluation and its lateralization could be key elements for subtyping the disease.

7.
J Acoust Soc Am ; 153(1): 77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732225

RESUMO

This study uses a 3-D representation of the cochlear fluid to extend the results of a recent paper [Sisto, Belardinelli, and Moleti (2021b). J. Acoust. Soc. Am. 150, 4283-4296] in which two hydrodynamic effects, pressure focusing and viscous damping of the BM motion, both associated with the sharp increase in the wavenumber in the peak region, were analyzed for a 2-D fluid, coupled to a standard 1-D transmission-line WKB approach to cochlear modeling. The propagation equation is obtained from a 3-D fluid volume conservation equation, yielding the focusing effect, and the effect of viscosity is represented as a correction to the local 1-D admittance. In particular, pressure focusing amplifies the BM response without modifying the peak admittance, and viscous damping determines the position of the response peak counteracting focusing, as sharp gradients of the velocity field develop. The full 3-D WKB formalism is necessary to represent satisfactorily the behavior of the fluid velocity field near the BM-fluid interface, strictly related to viscous losses. As in finite element models, a thin layer of fluid is effectively attached to the BM due to viscosity, and the viscous force associated with the vertical gradient of the fluid vertical velocity acts on the BM through this layer.


Assuntos
Cóclea , Hidrodinâmica , Viscosidade , Cóclea/fisiologia , Movimento (Física)
8.
Front Public Health ; 10: 958181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203702

RESUMO

This study is part of a project on early hearing dysfunction induced by combined exposure to volatile organic compounds (VOCs) and noise in occupational settings. In a previous study, 56 microRNAs were found differentially expressed in exposed workers compared to controls. Here, we analyze the statistical association of microRNA expression with audiometric hearing level (HL) and distortion product otoacoustic emission (DPOAE) level in that subset of differentially expressed microRNAs. The highest negative correlations were found; for HL, with miR-195-5p and miR-122-5p, and, for DPOAEs, with miR-92b-5p and miR-206. The homozygous (mut) and heterozygous (het) variants of the gene hOGG1 were found disadvantaged with respect to the wild-type (wt), as regards the risk of hearing impairment due to exposure to VOCs. An unsupervised artificial neural network (auto contractive map) was also used to detect and show, using graph analysis, the hidden connections between the explored variables. These findings may contribute to the formulation of mechanistic hypotheses about hearing damage due to co-exposure to noise and ototoxic solvents.


Assuntos
Perda Auditiva Provocada por Ruído , MicroRNAs , Ototoxicidade , Compostos Orgânicos Voláteis , Limiar Auditivo , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/genética , Humanos , MicroRNAs/genética , Solventes/toxicidade , Compostos Orgânicos Voláteis/efeitos adversos
9.
Front Aging Neurosci ; 14: 803973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197842

RESUMO

Several studies identified hearing loss as a risk factor for aging-related processes, including neurodegenerative diseases, as dementia and age-related hearing loss (ARHL). Although the association between hearing impairment in midlife and ARHL has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood. In this study, we used an established animal model of ARHL (C57BL/6 mice) to evaluate if early noise-induced hearing loss (NIHL) could affect the onset or progression of age-related cochlear dysfunction. We found that hearing loss can exacerbate ARHL, damaging sensory-neural cochlear epithelium and causing synaptopathy. Moreover, we studied common pathological markers shared between hearing loss and ARHL, demonstrating that noise exposure can worsen/accelerate redox status imbalance [increase of reactive oxygen species (ROS) production, lipid peroxidation, and dysregulation of endogenous antioxidant response] and vascular dysfunction [increased expression of hypoxia-inducible factor-1alpha (HIF-1α) and vascular endothelial growth factor C (VEGFC)] in the cochlea. Unveiling the molecular mechanisms underlying the link between hearing loss and aging processes could be valuable to identify effective therapeutic strategies to limit the effect of environmental risk factors on age-related diseases.

10.
J Assoc Res Otolaryngol ; 22(6): 623-640, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34677710

RESUMO

The mammalian cochlea achieves its remarkable sensitivity, frequency selectivity, and dynamic range by spatially segregating the different frequency components of sound via nonlinear processes that remain only partially understood. As a consequence of the wave-based nature of cochlear processing, the different frequency components of complex sounds interact spatially and nonlinearly, mutually suppressing one another as they propagate. Because understanding nonlinear wave interactions and their effects on hearing appears to require mathematically complex or computationally intensive models, theories of hearing that do not deal specifically with cochlear mechanics have often neglected the spatial nature of suppression phenomena. Here we describe a simple framework consisting of a nonlinear traveling-wave model whose spatial response properties can be estimated from basilar-membrane (BM) transfer functions. Without invoking jazzy details of organ-of-Corti mechanics, the model accounts well for the peculiar frequency-dependence of suppression found in two-tone suppression experiments. In particular, our analysis shows that near the peak of the traveling wave, the amplitude of the BM response depends primarily on the nonlinear properties of the traveling wave in more basal (high-frequency) regions. The proposed framework provides perhaps the simplest representation of cochlear signal processing that accounts for the spatially distributed effects of nonlinear wave propagation. Shifting the perspective from local filters to non-local, spatially distributed processes not only elucidates the character of cochlear signal processing, but also has important consequences for interpreting psychophysical experiments.


Assuntos
Membrana Basilar , Cóclea/fisiologia , Mascaramento Perceptivo , Animais , Limiar Auditivo , Audição , Som
11.
Int J Audiol ; 60(11): 890-899, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33612052

RESUMO

Objective: Distortion product otoacoustic emission (DPOAE) levels plotted as a function of stimulus frequency ratio demonstrate a bandpass shape. This bandpass shape is narrower at higher frequencies compared to lower frequencies and thus has been thought to be related to cochlear mechanical tuning.Design: However, the frequency- and level-dependence of these functions above 8 kHz is largely unknown. Furthermore, how tuning estimates from these functions are related to behavioural tuning is not fully understood.Study Sample: From experiment 1, we report DPOAE level ratio functions (LRF) from seven normal-hearing, young-adults for f2 = 0.75-16 kHz and two stimulus levels of 62/52 and 52/37 dB FPL. We found that LRFs became narrower as a function of increasing frequency and decreasing level.Results: Tuning estimates from these functions increased as expected from 1-8 kHz. In experiment 2, we compared tuning estimates from DPOAE LRF to behavioural tuning in 24 normal-hearing, young adults for 1 and 4 kHz and found that behavioural tuning generally predicted DPOAE LRF estimated tuning.Conclusions: Our findings suggest that DPOAE LRFs generally reflect the tuning profile consistent with basilar membrane, neural, and behavioural tuning. However, further investigations are warranted to fully determine the use of DPOAE LRF as a clinical measure of cochlear tuning.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Limiar Auditivo , Testes Auditivos , Humanos , Adulto Jovem
12.
J Acoust Soc Am ; 149(2): 1296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33639784

RESUMO

The low-pass characteristic of the outer hair cell (OHC) voltage response to mechanical stimulation could be considered a serious problem for cochlear models aiming at explaining high-frequency active amplification by introducing instantaneous nonlinear terms because active gain would dramatically decrease at high frequency. Evidence from experimental studies by Nam and Fettiplace [(2012). PloS One 7, e50572] suggests that the local cutoff frequency significantly increases approaching the cochlear base, somehow mitigating this problem. In this study, low-pass filtering of an internal force term, derived from a physiologically plausible OHC schematization by Lu, Zhak, Dallos, and Sarpeshkar [(2006). Hear. Res. 214, 45-67] is included in a simple one-dimensional (1-D) two-degrees-of-freedom transmission-line model by Sisto, Shera, Altoè, and Moleti [(2019). J. Acoust. Soc. Am. 146, 1685-1695] The frequency dependence of the low-pass filter phase-shift naturally yields a transition from sharp tuning and wide dynamical gain range in the basal cochlea to low tuning and poor dynamical range in the apical region. On the other hand, the frequency-dependent attenuation of low-pass filtering makes it more difficult to obtain the high gain (40-50 dB) of the basal basilar membrane response that is experimentally measured in mammals at low stimulus levels. Pressure focusing in the short-wave resonant region, which is not accounted for in this 1-D model, may help in acquiring the additional gain necessary to match the experimental data.


Assuntos
Cóclea , Células Ciliadas Auditivas Externas , Estimulação Acústica , Animais , Membrana Basilar , Audição , Dinâmica não Linear
13.
J Acoust Soc Am ; 150(6): 4283, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34972263

RESUMO

This paper discusses the role of two-dimensional (2-D)/three-dimensional (3-D) cochlear fluid hydrodynamics in the generation of the large nonlinear dynamical range of the basilar membrane (BM) and pressure response, in the decoupling between cochlear gain and tuning, and in the dynamic stabilization of the high-gain BM response in the peak region. The large and closely correlated dependence on stimulus level of the BM velocity and fluid pressure gain [Dong, W., and Olson, E. S. (2013). Biophys. J. 105(4), 1067-1078] is consistent with a physiologically oriented schematization of the outer hair cell (OHC) mechanism if two hydrodynamic effects are accounted for: amplification of the differential pressure associated with a focusing phenomenon, and viscous damping at the BM-fluid interface. The predictions of the analytical 2-D Wentzel-Kramers-Brillouin (WKB) approach are compared to solutions of a 3-D finite element model, showing that these hydrodynamic phenomena yield stable high-gain response in the peak region and a smooth transition among models with different effectiveness of the active mechanism, mimicking the cochlear nonlinear response over a wide stimulus level range. This study explains how an effectively anti-damping nonlinear outer hair cells (OHC) force may yield large BM and pressure dynamical ranges along with an almost level-independent admittance.


Assuntos
Membrana Basilar , Cóclea , Membrana Basilar/fisiologia , Cóclea/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Dinâmica não Linear , Viscosidade
14.
Free Radic Biol Med ; 163: 31-42, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307165

RESUMO

BACKGROUND: Although styrene is an established ototoxic agent at occupational exposure levels, the mechanisms of styrene toxicity in the auditory system are still unclear. OBJECTIVES: The aim of this study was to identify the consequences of styrene chronic exposure in cochlear structures, looking for the mechanisms of ototoxicity of this organic compound and focusing on cell targets and oxidative stress/inflammatory processes. METHODS: Male adult Wistar rats were exposed to styrene (400 mg/kg by gavage for 5 days/week, 3 consecutive weeks). Hearing loss was evaluated by measuring auditory brainstem responses (ABR), morphological analysis were performed to evaluate hair cell and spiral ganglion neuron survival, as well as synaptic damage. Analysis of apoptotic (p53) and inflammatory (NF-κB, TNF-α, IL-1ß and IL-10) mediators were performed by immunofluorescence analysis and western blot. RESULTS: Styrene ototoxic effects induced a hearing loss of about 35-40 dB. Immunofluorescence and western blotting analyses demonstrated that styrene administration induced redox imbalance and activated inflammatory processes, targeting sensory hair cell and neural dysfunction by a cross-talk between oxidative and inflammatory mediators. DISCUSSION: Major findings connect styrene ototoxicity to an interplay between redox imbalance and inflammation, leading to the intriguing assumption of a mixed sensory and neural styrene-induced ototoxicity. Thus, in a clinical perspective, data reported here have important implications for styrene risk assessment in humans.


Assuntos
Cóclea , Estireno , Animais , Inflamação/induzido quimicamente , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Estireno/toxicidade
15.
Brain Commun ; 2(2): fcaa144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376982

RESUMO

In the last decade, animal studies highlighted the sensitivity of hearing function to lack of specific cochlear dopamine receptors, while several studies on humans reported association between hearing loss and Parkinson's disease, partially recovered after levodopa administration in de novo patients. Taken together, these observations suggest investigating the possible use of cochlear function outcome variables, particularly, otoacoustic emissions, as sensitive biomarkers of Parkinson's disease. Any lateralization of hearing dysfunction correlated with Parkinson's disease lateralization would (i) further confirm their association and (ii) provide a disease-specific differential outcome variable. Differential indicators are particularly useful for diagnostic purposes, because their effectiveness is not limited by physiological inter-subject fluctuations of the outcome variable. Recent advances in the acquisition and analysis techniques of otoacoustic emissions suggest using them for evaluating differential cochlear damage in the two ears. In this study, we quantitatively evaluated hearing function in a population of subjects with Parkinson's disease, to investigate the occurrence of hearing loss, and, particularly, whether hearing dysfunction shows lateralization correlated with motor symptoms. Pure tone audiometry and distortion product otoacoustic emissions were used as outcome variables in 80 patients (mean age 65 ± 9 years) and 41 controls (mean age 64 ± 10 years). An advanced customized acquisition and analysis system was developed and used for otoacoustic testing, which guarantees response stability independent of probe insertion depth, and has the sensitivity necessary to accurately assess the low levels of otoacoustic response typical of elderly subjects. To our knowledge, this is the first study introducing the distinction between ipsilateral and contralateral ear, with respect to the body side more affected by Parkinson's disease motor symptoms. Significant asymmetry was found in the auditory function, as both otoacoustic responses and audiometric hearing levels were worse in the ipsilateral ear. Significantly worse hearing function was also observed in patients with Parkinson's disease compared to controls, confirming previous studies. Several pathophysiological mechanisms may be hypothesized to explain asymmetric cochlear damage in Parkinson's disease, including the impairment of dopamine release and the involvement of extra-dopaminergic circuits, with the cholinergic pathway as a likely candidate. The observed asymmetry in the audiological response of patients with Parkinson's disease suggests that lateralization of hearing dysfunction could represent a specific non-motor signature of the disease. The possible diagnostic use of cochlear dysfunction asymmetry as a specific biomarker of Parkinson's disease deserves further investigation, needing a more precise quantitative assessment, which would require a larger sample size.

16.
J Assoc Res Otolaryngol ; 21(6): 463-473, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959194

RESUMO

The spatial extent of the cochlear region that actually contributes to the DPOAE signal measured in the ear canal may be evaluated experimentally using interference tones or computed numerically using nonlinear cochlear models. A nonlinear transmission-line cochlear model is used in this study to evaluate whether the recently reported nonlinear behavior of the reticular lamina (RL) over a wide basal region may be associated with generation of a significant distortion product otoacoustic emission (DPOAE) component. A two-degrees-of-freedom 1-D nonlinear model was used as discussed by Sisto et al. (2019), in which each local element consists of two coupled oscillators, roughly representing the basilar membrane (BM) and the RL. In this model, the RL shows a strongly nonlinear response over a wide region basal to the characteristic place, whereas the BM response is linear outside the narrow peak region. Such a model may be considered as that using the minimal number of degrees of freedom necessary to separately predict the motion of the BM and RL, while preserving important cochlear symmetries, such as the zero-crossing invariance of the impulse response. In the numerical simulations, the RL nonlinearity generates indeed a large intracochlear distortion product source, extended down to very basal cochlear regions. Nevertheless, due to the weak and indirect coupling between the RL motion and the differential fluid pressure in the basal part of the traveling wave path, no significant contribution from this mechanism is predicted by the model to the generation of the DPOAE signal that is eventually measured in the ear canal.


Assuntos
Cóclea/fisiologia , Testes Auditivos , Modelos Biológicos , Humanos
17.
J Acoust Soc Am ; 148(1): EL8, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32752769

RESUMO

A two-degrees-of-freedom nonlinear cochlear model [Sisto, Shera, Altoè, and Moleti (2019). J. Acoust. Soc. Am. 146, 1685-1695] correctly predicts that the reticular lamina response is nonlinear over a wide basal region. Numerical simulations of suppression tuning curves agree with a recent experiment [Dewey, Applegate, and Oghalai (2019). J. Neurosci. 39, 1805-1816], supporting the idea that the strong susceptibility of the reticular lamina response to suppression by high-frequency tones does not imply that the total traveling wave energy builds-up in correspondingly basal regions. This happens because the reticular lamina is the lightest element of a coupled-oscillators system, only indirectly coupled to the differential pressure.


Assuntos
Cóclea , Dinâmica não Linear
19.
J Speech Lang Hear Res ; 63(6): 1958-1968, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32464079

RESUMO

Purpose The phase delay of stimulus frequency otoacoustic emissions (SFOAEs) has been proposed as a noninvasive, objective, and fast source for estimating cochlear mechanical tuning. However, the implementation of SFOAEs clinically has been thwarted by the gaps in understanding of the stability of SFOAE delay-based tuning estimates and their relationship to behavioral measures of tuning. Therefore, the goals of this study were (a) to investigate the relationship between delay-based tuning estimates from SFOAEs and simultaneously masked psychophysical tuning curves (PTCs) and (b) to assess the across- and within-session repeatability of tuning estimates from behavioral and OAE measures. Method Three sets of behavioral and OAE measurements were collected in 24 normal-hearing, young adults for two probe frequencies, 1 and 4 kHz. For each participant, delay-based tuning estimates were derived from the phase gradient of SFOAEs. SFOAE-based and behavioral estimates of tuning obtained using the fast-swept PTC paradigm were compared within and across sessions. Results In general, tuning estimates were sharper at 4 kHz compared to 1 kHz for both PTCs and SFOAEs. Statistical analyses revealed a significant correlation between SFOAE delay-based tuning and PTCs at 4 kHz, but not 1 kHz. Lastly, SFOAE delay-based tuning estimates showed better intra- and intersession repeatability compared to PTCs. Conclusions SFOAE phase-gradient delays reflect aspects of cochlear mechanical tuning, in that a frequency dependence similar to that of basilar membrane tuning was observed. Furthermore, the significant correlation with PTCs at 4 kHz and the high repeatability of SFOAE-based tuning measures offer promise of an objective, nonbehavioral assay of tuning in human ears.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Estimulação Acústica , Humanos , Adulto Jovem
20.
Int J Audiol ; 59(6): 443-454, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31910691

RESUMO

Objective: To evaluate the ototoxic effect of the exposure to different organic solvents and noise using distortion product otoacoustic emissions (DPOAEs).Design: The exposure to different solvents was evaluated by measuring, before and at the end of the work-shift, the urinary concentrations of solvent metabolites used as dose biomarkers. The urinary concentrations of DNA and RNA oxidation products were also measured as biomarkers of oxidative damage. The simultaneous exposure to noise was also evaluated. DPOAEs and pure tone audiometry (PTA) were used as outcome variables, and were correlated to the exposure variables using mixed effect linear regression models.Study sample: Seventeen industrial painters exposed to a solvent mixture in a naval industry. A sample size of 15 was estimated from previous studies as sufficient for discriminating small hearing level and DPOAE level differences (5 dB and 2 dB, respectively) at a 95% confidence level.Results: Statistically significant associations were found between the DPOAE level and the urinary dose biomarkers and the oxidative damage biomarkers. DPOAE level and the logarithm of the metabolite concentration showed a significant negative correlation.Conclusions: DPOAE are sensitive biomarkers of exposure to ototoxic substances and can be effectively used for the early detection of hearing dysfunction.


Assuntos
Doenças Profissionais/diagnóstico , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Ototoxicidade/diagnóstico , Pintura , Solventes/toxicidade , Adulto , Audiometria de Tons Puros , Biomarcadores/urina , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Ruído Ocupacional/efeitos adversos , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/urina , Exposição Ocupacional/efeitos adversos , Ototoxicidade/etiologia , Ototoxicidade/urina , Estresse Oxidativo/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...