Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 251: 116117, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350239

RESUMO

Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cell-laden BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 µN, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.


Assuntos
Bioimpressão , Técnicas Biossensoriais , Camundongos , Animais , Alicerces Teciduais/química , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Hidrogéis/química
2.
Phys Chem Chem Phys ; 23(30): 16157-16164, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297025

RESUMO

Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 ß-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.


Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanoestruturas/química , Poliésteres/química , Polímeros/química , Poliestirenos/química , Álcool de Polivinil/química , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/química , Espectroscopia Dielétrica , Condutividade Elétrica , Canais Iônicos/química , Transporte de Íons , Íons/isolamento & purificação , Lisina/química , Relação Estrutura-Atividade , Propriedades de Superfície
3.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299621

RESUMO

Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.

4.
Adv Healthc Mater ; 10(14): e2100425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893723

RESUMO

Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PPf /CP2 , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm-2 and a detection limit up to 0.14 × 10-3 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains.


Assuntos
Técnicas Biossensoriais , Polímeros , Bactérias , Eletrodos , NAD , Polipropilenos
5.
J Mater Chem B ; 8(38): 8864-8877, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33026390

RESUMO

Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g. fabrication of implants), for engineering a 3D all-polymer flexible interface that enhances cell proliferation by a factor of ca. three. A hierarchical construction process consisting of three steps was engineered as follows: (1) functionalization of i-PP by applying a plasma treatment, resulting in i-PPf; (2) i-PPf surface coating with a layer of polyhydroxymethy-3,4-ethylenedioxythiophene nanoparticles (PHMeEDOT NPs) by in situ chemical oxidative polymerization of HMeEDOT; and (3) deposition on the previously activated and PHMeEDOT NPs coated i-PP film (i-PPf/NP) of a graft conjugated copolymer, having a poly(3,4-ethylenedioxythiophene) (PEDOT) backbone, and randomly distributed short poly(ε-caprolactone) (PCL) side chains (PEDOT-g-PCL), as a coating layer of ∼9 µm in thickness. The properties of the resulting bioplatform, which can be defined as a robust macroscopic composite coated with a "molecular composite", were investigated in detail, and both adhesion and proliferation of two human cell lines have been evaluated, as well. The results demonstrate that the incorporation of the PEDOT-g-PCL layer significantly improves cell attachment and cell growth not only when compared to i-PP but also with respect to the same platform coated with only PEDOT, constructed in a similar manner, as a control.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Polipropilenos/química , Alicerces Teciduais/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica , Células HeLa , Humanos , Nanopartículas/química , Maleabilidade , Poliésteres/síntese química , Poliésteres/química , Polímeros/síntese química , Engenharia Tecidual/métodos , Molhabilidade
6.
Molecules ; 25(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456314

RESUMO

Polymer materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. The present study reviews the field of electrochemical biosensors fabricated on modified plastics and polymers, focusing the attention, in the first part, on modified conducting polymers to improve sensitivity, selectivity, biocompatibility and mechanical properties, whereas the second part is dedicated to modified "environmentally friendly" polymers to improve the electrical properties. These ecofriendly polymers are divided into three main classes: bioplastics made from natural sources, biodegradable plastics made from traditional petrochemicals and eco/recycled plastics, which are made from recycled plastic materials rather than from raw petrochemicals. Finally, flexible and wearable lab-on-a-chip (LOC) biosensing devices, based on plastic supports, are also discussed. This review is timely due to the significant advances achieved over the last few years in the area of electrochemical biosensors based on modified polymers and aims to direct the readers to emerging trends in this field.


Assuntos
Técnicas Biossensoriais , Eletrodos , Polímeros/química , Plásticos Biodegradáveis/química , Humanos , Dispositivos Lab-On-A-Chip
7.
Macromol Biosci ; 20(7): e2000074, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449596

RESUMO

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real-time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin-coated layers of poly-γ-glutamic acid hydrogel, loaded with poly(3,4-ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly-ε-caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT), that semi-interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV-vis spectroscopy and in situ by using the PHMeDOT network. In situ real-time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi-functional devices for advanced biomedical applications.


Assuntos
Monitoramento de Medicamentos , Eletricidade , Hidrogéis/química , Bactérias/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Liberação Controlada de Fármacos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Poliésteres/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
8.
Polymers (Basel) ; 11(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731560

RESUMO

Two azo dyes, acid red 1 (AR1) and acid red 18 (AR18), were used alone or in combination with sodium dodecyl sulfate (SDS) for the electropolymerization of a pyrrole monomer. Polypyrrole (PPy) showed higher redox capacity when SDS and AR18 were used simultaneously as dopant agents (PPy/AR18-SDS) than when the conducting polymer was produced in the presence of SDS, AR18, AR1, or an AR1/SDS mixture. Moreover, PPy/AR18-SDS is a self-stabilizing material that exhibits increasing electrochemical activity with the number of oxidation-reduction cycles. A mechanism supported by scanning electron microscopy and X-ray diffraction structural observations was proposed to explain the synergy between the SDS surfactant and the AR18 dye. On the other hand, the Bordeaux red color of PPy/AR18-SDS, which exhibits an optical band gap of 1.9 eV, rapidly changed to orange-yellow and blue colors when films were reduced and oxidized, respectively, by applying linear or step potential ramps. Overall, the results indicate that the synergistic utilization of AR18 and SDS as dopant agents in the same polymerization reaction is a very successful and advantageous strategy for the preparation of PPy films with cutting-edge electrochemical and electrochromic properties.

9.
ACS Appl Mater Interfaces ; 11(32): 29427-29435, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313896

RESUMO

The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry, and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping the mass of electroactive PEDOT unaltered.

10.
Macromol Biosci ; 19(8): e1900130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31222941

RESUMO

Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded ß-glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε-caprolactone) (PCL)-based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip-coating or spin-coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip-coated and spin-coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.


Assuntos
Ambroxol/química , Preparações de Ação Retardada/química , Glucosilceramidase/química , Poliésteres/química , Substâncias Protetoras/química , Ambroxol/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Técnicas Eletroquímicas , Temperatura Alta , Cinética , Substâncias Protetoras/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica
11.
Gels ; 4(4)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30674862

RESUMO

In this work, we report the design and fabrication of a dual-function integrated system to monitor, in real time, the release of previously loaded 2-methyl-1,4-naphthoquinone (MeNQ), also named vitamin K3. The newly developed system consists of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, which were embedded into a poly-γ-glutamic acid (γ-PGA) biohydrogel during the gelling reaction between the biopolymer chains and the cross-linker, cystamine. After this, agglomerates of PEDOT nanoparticles homogeneously dispersed inside the biohydrogel were used as polymerization nuclei for the in situ anodic synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) in aqueous solution. After characterization of the resulting flexible electrode composites, their ability to load and release MeNQ was proven and monitored. Specifically, loaded MeNQ molecules, which organized in shells around PEDOT nanoparticles agglomerates when the drug was simply added to the initial gelling solution, were progressively released to a physiological medium. The latter process was successfully monitored using an electrode composite through differential pulse voltammetry. The fabrication of electroactive flexible biohydrogels for real-time release monitoring opens new opportunities for theranostic therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...