Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(18): 3596-3603, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38656804

RESUMO

The vibrational and electronic spectroscopy of the radical cations of two nucleobases (NB) (uracil and thymine) was studied by cryogenic ion photodissociation spectroscopy. The radical cations have been generated from the photodissociation of NB-Ag+ complexes. A charge transfer process from the NB to Ag+ governs the deactivation mechanism, leading to the formation of the radical cation without further tautomerization. Single- and double-resonance spectroscopy allows for structural assignments of both the silver complexes and the radical cations by comparison with DFT-based calculations. Interestingly, a tautomer-dependent fragmentation is observed in the thymine enol form that involves the loss of NCO, a fragment which was never reported before for this NB. This selective photodissociation of silver complexes containing aromatic chromophore greatly expands the current technique to produce isomer-selected radical cations in the gas phase providing benchmark experimental data to assess calculations of open-shell species.

2.
Chemphyschem ; 24(1): e202200324, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36000956

RESUMO

The photodetachment and stability of R-Mandelate, the deprotonated form of the R-Mandelic acid, was investigated by observing the neutral species issued from either simple photodetachment or dissociative photodetachment in a cold anions set-up. R-Mandalate has the possibility to form an intramolecular ionic hydrogen-bond between adjacent hydroxyl and carboxylate groups. The potential energy surface along the proton transfer (PT) coordinate between both groups (O- …H+ …- OCO) features a single local minima, with the proton localized on the O- group (OH…- OCO). However, the structure with the proton localized on the - OCO group (O- …HOCO) is also observed because it falls within the extremity of the vibrational wavefunction of the OH…- OCO isomer along the PT coordinate. The stability of the corresponding radicals, produced upon photodetachment, is strongly dependent on the position of the proton in the anion: the radicals produced from the OH…- OCO isomer decarboxylate without barrier, while the radicals produced from the O- …HOCO isomer are stable.


Assuntos
Hidrogênio , Prótons , Isomerismo , Ácidos Mandélicos , Ânions/química
3.
Chemphyschem ; 24(2): e202200561, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36177693

RESUMO

The photodynamics of protonated tryptophan and its mono hydrated complex TrpH+ -H2 O has been revisited. A combination of steady-state IR and UV cryogenic ion spectroscopies with picosecond pump-probe photodissociation experiments sheds new lights on the deactivation processes of TrpH+ and conformer-selected TrpH+ -H2 O complex, supported by quantum chemistry calculations at the DFT and coupled-cluster levels for the ground and excited states, respectively. TrpH+ excited at the band origin exhibits a transient of less than 100 ps, assigned to the lifetime of the excited state proton transfer (ESPT) structure. The two experimentally observed conformers of TrpH+ -H2 O have been assigned. A striking result arises from the conformer-selective photodynamics of TrpH+ -H2 O, in which a single water molecule inserted in between the ammonium and the indole ring hinders the barrierless ESPT reaction responsible for the ultra-fast deactivation process observed in the other conformer and in bare TrpH+ .


Assuntos
Prótons , Triptofano , Triptofano/química , Água
4.
Phys Chem Chem Phys ; 24(41): 25182-25190, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250320

RESUMO

Oxidation of the nucleobases is of great concern for the stability of DNA strands and is considered as a source of mutagenesis and cancer. However, precise spectroscopy data, in particular in their electronic excited states are scarce if not missing. We here report an original way to produce isomer-selected radical cations of DNA bases, exemplified in the case of cytosine, through the photodissociation of cold cytosine-silver (C-Ag+) complex. IR-UV dip spectroscopy of C-Ag+ features fingerprint bands for the two keto-amino cytosine tautomers. UV photodissociation (UVPD) of the isomer-selected C-Ag+ complexes produces the cytosine radical cation (C˙+) without isomerization. IR-UV cryogenic ion spectroscopy of C˙+ allows for the unambiguous structural assignment of the two keto-amino isomers of C˙+. UVPD spectroscopy of the isomer-selected C˙+ species is recorded at a unique spectral resolution. These benchmark spectroscopic data of the electronic excited states of C˙+ are used to assess the quantum chemistry calculations performed at the TD-DFT, CASSCF/CASPT2 and CASSCF/MRCI-F12 levels.


Assuntos
Citosina , DNA , Citosina/química , Isomerismo , Análise Espectral , Cátions/química , DNA/química
5.
J Phys Chem B ; 125(26): 7137-7146, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165305

RESUMO

In this paper, we present the IRMPD spectra of three ionic complexes between guanine (G) and silver (Ag+): [GAg-H2O]+, [GAgG]+ produced in the electrospray ionization source of the mass spectrometer, and [GAg]+ produced by collision induced dissociation of the [GAgG]+ complex. On the basis of the comparison of theoretically calculated IR spectra, we show that there are two isomers of each complex containing two different keto-amino (KA) tautomers of G (GKA(1,9) and GKA(1,7)). The observed isomers are the most stable structures in aqueous solution, and their experimentally estimated relative populations are in better agreement with the calculated relative populations in solution than in the gas phase, both at 298 K. We concluded that these observations suggest that GKA(1,9) and GKA(1,7) coexist in solution according to previous theoretical reports (Colominas, C.; et al. J. Am. Chem. Soc. 1996, 118, 6811). We were unable to find any evidence of the presence of the GEA(9), GKA(3,7), GKA(3,9), or GKA(7,9), whose relative stabilities in solution are strongly dependent on the theoretical method used to account for the solvent effect (Hanus, M.; et al. J. Am. Chem. Soc. 2003, 125, 7678).


Assuntos
Guanina , Prata , Gases , Espectrometria de Massas , Espectrofotometria Infravermelho
6.
Phys Chem Chem Phys ; 22(29): 16813-16821, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662468

RESUMO

Ligand-free atomic silver nanoclusters (AgNCs) were successfully synthesized following the electrochemical procedure developed by Lopez-Quintela and col. (D. Buceta, N. Busto, G. Barone, J. M. Leal, F. Domínguez, L. J. Giovanetti, F. G. Requejo, B. García and M. A. López-Quintela, Angew. Chem., Int. Ed., 2015, 54, 7612-7616), who have identified the presence of Ag2 and Ag3 AgNCs. The goal of this work was to get information on the photophysics of these AgNCs, which was achieved by combining information from excitation/emission matrix (EEM) and time resolved emission spectroscopy (TRES) along with DFT/TD-DFT calculations. This procedure allowed deconvolving the emission and excitation spectra of the AgNC mixture, with further assignment of each transition and lifetime associated to Ag2, Ag3+ and Ag42+ clusters. This deconvolution together with theoretical calculations allowed suggesting for the first time the radiative and non-radiative excited state deactivation mechanism for these clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...