Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 656: 468-474, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30522029

RESUMO

Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector.


Assuntos
Poluentes Atmosféricos/análise , Reatores Biológicos , Monitoramento Ambiental/métodos , Metano/análise , Eliminação de Resíduos Líquidos , Anaerobiose , Monitoramento Ambiental/instrumentação , México , Esgotos
2.
Sci Total Environ ; 639: 84-91, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778686

RESUMO

Wastewater treatment (WWT) may be an important source of methane (CH4), a greenhouse gas with significant global warming potential. Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH4-neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines.

3.
Sci Total Environ ; 499: 141-53, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25181046

RESUMO

The purpose of this study is to investigate the impact of using an ensemble Kalman filter (EnKF) on air quality simulations in the California-Mexico border region on two days (May 30 and June 04, 2010) during Cal-Mex 2010. The uncertainties in ozone (O3) and aerosol simulations in the border area due to the meteorological initial uncertainties were examined through ensemble simulations. The ensemble spread of surface O3 averaged over the coastal region was less than 10ppb. The spreads in the nitrate and ammonium aerosols are substantial on both days, mostly caused by the large uncertainties in the surface temperature and humidity simulations. In general, the forecast initialized with the EnKF analysis (EnKF) improved the simulation of meteorological fields to some degree in the border region compared to the reference forecast initialized with NCEP analysis data (FCST) and the simulation with observation nudging (FDDA), which in turn leading to reasonable air quality simulations. The simulated surface O3 distributions by EnKF were consistently better than FCST and FDDA on both days. EnKF usually produced more reasonable simulations of nitrate and ammonium aerosols compared to the observations, but still have difficulties in improving the simulations of organic and sulfate aerosols. However, discrepancies between the EnKF simulations and the measurements were still considerably large, particularly for sulfate and organic aerosols, indicating that there are still ample rooms for improvement in the present data assimilation and/or the modeling systems.


Assuntos
Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Químicos , Aerossóis/análise , Poluição do Ar/análise , California , Monitoramento Ambiental/instrumentação , Filtração , Conceitos Meteorológicos , México , Ozônio/análise
4.
Environ Sci Technol ; 42(17): 6619-24, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18800539

RESUMO

A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein, we report quantitative intercomparisons of particle-induced X-ray emission (PIXE) and proton elastic scattering analysis (PESA), performed of fline under a vacuum, with analysis by aerosol mass spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO4(2-)) and AMS-measured sulfate during most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions, assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under a vacuum. However approximately 25% of the organics does remain under a vacuum, which is only possible with low-vapor-pressure compounds, and which supports the presence of high-molecular-weight or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS and, to our knowledge, also the first report of PESA hydrogen measurements for urban organic aerosols.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera , Espectrometria de Massas/métodos , Análise Espectral/métodos , Prótons , Raios X
5.
Environ Sci Technol ; 36(11): 2395-402, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12075795

RESUMO

Relative rate techniques were used to measure k(OH + HFE-7500) = (2.6+/-0.6) x 10(-14), k(Cl + HFE-7500) = (2.3+/-0.7) x 10(-12), k[Cl + n-C3F7CF(OC(O)H)CF(CF3)2] = (9.7+/-1.4) x 10(-15), and k[Cl + n-C3F7CF(OC(O)CH3)CF(CF3)2] < 6 x 10(-17) cm3 molecule(-1) s(-1) at 295 K [HFE-7500 = n-C3F7-CF(OC2H5)CF(CF3)2]. From the value of k(OH + HFE-7500) an estimate of 2.2 years for the atmospheric lifetime of HFE-7500 is obtained. Two competing loss mechanisms for n-C3F7-CF(OCHO.CH3)CF(CF3)2 radicals were identified in 700 Torr of N2/O2 diluent at 295 K; reaction with O2 and decomposition via C-C bond scission with kO2/k(decomp) = 0.013+/-0.006 Torr(-1). The Cl atom initiated oxidation of HFE-7500 in N2/O2 diluent gives n-C3F7CF(OC(O)CH3)CF(CF3)2 as the major product and n-C3F7CF(OC(O)H)CF(CF3)2 as a minor product. The atmospheric oxidation of HFE-7500 gives n-C3F7-CF(OC(O)CH3)CF(CF3)2 and n-C3F7CF(OC(O)H)CF(CF3)2 as oxidation products. The results are discussed with respect to the atmospheric chemistry and environmental impact of HFE-7500.


Assuntos
Poluentes Atmosféricos/análise , Cloro/química , Clorofluorcarbonetos/análise , Clorofluorcarbonetos/química , Radical Hidroxila/química , Oxidantes/química , Monitoramento Ambiental , Oxirredução
6.
Science ; 238(4831): 1253-7, 1987 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17744362

RESUMO

The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO(2)) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO(2) on the surface of ice with HCl in the mole fraction range from approximately 0.003 to 0.010 is in the range from approximately 0.05 to 0.1 for temperatures near 200 K. Chlorine (Cl(2)) is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO(3)), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO(3) and thus removes nitrogen dioxide (NO(2)) from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals. In the absence of HCl, ClONO(2) also reacts irreversibly with ice with a collision efficiency of approximately 0.02 at 200 K; the product hypochlorous acid (HOCI) is released to the gas phase on a time scale of minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...