Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 12(3): e759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297555

RESUMO

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Assuntos
Autofagia , Proteínas do Olho , Células-Tronco Pluripotentes Induzidas , Agregados Proteicos , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Ribonucleoproteínas Nucleares Pequenas
2.
Ocul Surf ; 21: 279-298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865984

RESUMO

PURPOSE: Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. METHODS: Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). RESULTS: scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. CONCLUSIONS: Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.


Assuntos
Epitélio Corneano , Limbo da Córnea , Adulto , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais , Humanos , Células-Tronco
3.
Stem Cells ; 39(4): 458-466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442906

RESUMO

Development of the retina is regulated by growth factors, such as insulin-like growth factors 1 and 2 (IGF-1/2), which coordinate proliferation, differentiation, and maturation of the neuroepithelial precursors cells. In the circulation, IGF-1/2 are transported by the insulin growth factor binding proteins (IGFBPs) family members. IGFBPs can impact positively and negatively on IGF-1, by making it available or sequestering IGF-1 to or from its receptor. In this study, we investigated the expression of IGFBPs and their role in the generation of human retinal organoids from human pluripotent stem cells, showing a dynamic expression pattern suggestive of different IGFBPs being used in a stage-specific manner to mediate IGF-1 functions. Our data show that IGF-1 addition to culture media facilitated the generation of retinal organoids displaying the typical laminated structure and photoreceptor maturation. The organoids cultured in the absence of IGF-1, lacked the typical laminated structure at the early stages of differentiation and contained significantly less photoreceptors and more retinal ganglion cells at the later stages of differentiation, confirming the positive effects of IGF-1 on retinal lamination and photoreceptor development. The organoids cultured with the IGFBP inhibitor (NBI-31772) and IGF-1 showed lack of retinal lamination at the early stages of differentiation, an increased propensity to generate horizontal cells at mid-stages of differentiation and reduced photoreceptor development at the later stages of differentiation. Together these data suggest that IGFBPs enable IGF-1's role in retinal lamination and photoreceptor development in a stage-specific manner.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like I/genética , Organoides/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células-Tronco Pluripotentes/metabolismo , Catecóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína Semelhante a ELAV 3/genética , Proteína Semelhante a ELAV 3/metabolismo , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/antagonistas & inibidores , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like II/metabolismo , Isoquinolinas/farmacologia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Recoverina/genética , Recoverina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...