Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(29): 11086-11093, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31257371

RESUMO

TiO2 is manufactured for white pigments, solar cells, self-cleaning surfaces and devices, and other photocatalytic applications. The industrial synthesis of TiO2 entails: (1) the dissolution of ilmenite ore (FeTiO3) in aqueous sulfuric acid which precipitates the Fe while retaining the Ti in solution, followed by (2) dilution or heating the Ti sulfate solution to precipitate the pure form of TiO2. The underlying chemistry of these processing steps remains poorly understood. Here we show that the dissolution of a simple TiIV-sulfate salt, representative of the industrial sulfate process for the production of TiO2, immediately self-assembles into a soluble Ti-octadecameric cluster, denoted as {Ti18}. We observed {Ti18} in solution by small-angle X-ray scattering and Ti extended X-ray absorption fine structure (Ti-EXAFS) analysis, and ultimately crystallized it for absolute identification. The {Ti18} metal-oxo cluster was previously reported as a polycation; but shown here, it can also be a polyanion, dependent on the number of sulfate ligands it carries. After immediate self-assembly, the {Ti18}-cluster persists until TiO2 precipitates, with no easily identified structural intermediates in the solution or solid state, despite the fact that the atomic arrangement of {Ti18} differs vastly from that of titania. The evolution from solution phase {Ti18} to precipitated TiO2 nanoparticles was detailed by X-ray scattering and Ti-EXAFS. We offer a hypothesis for the key mechanism of complete separation of Fe from Ti in the industrial sulfate process. These findings also highlight the emerging importance of the unusual Ti(Ti)5 pentagonal building unit, featured in {Ti18} as well as other early d0 transition metal-oxo clusters including Nb, Mo and W. Finally, this study presents an example of crystal growth mechanisms in which the observed "pre-nucleation cluster" does not necessarily predicate the structure of the precipitated solid.

2.
Angew Chem Int Ed Engl ; 56(51): 16277-16281, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29108099

RESUMO

Inorganic aqueous metal-oxo clusters are both functional "molecular metal oxides" and intermediates to understand metal oxide growth from water. There has been a recent surge in discovery of aqueous Ti-oxo clusters but without extensive solution characterization. We use small-angle and total X-ray scattering, dynamic light scattering, transmission electron microscopy, and a single-crystal X-ray structure to show that heterometals such as bismuth stabilize labile Ti-oxo sulfate clusters in aqueous solution.[Ti22 Bi7 O41 (OH)(OH2 )30 (SO4 )12 ]2+ features edge-sharing between the Ti and Bi polyhedra, in contrast to the dominant corner-linking of Ti-oxo clusters. Bi stabilizes the Ti-polyhedra, which are synergistically stabilized by the bidentate sulfates. Gained stability and potential functionality from heterometals is an incentive to develop more broadly the landscape of heterometallic Ti-oxo clusters.

3.
Chem Commun (Camb) ; 53(52): 7076-7079, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28627534

RESUMO

We report a {Cu16} embedded within a {W44} cluster containing four cubane-like [Cu4O4] units within an isopolyoxotungstate (isoPOT) in a {Na4Cu4[(H2W11O38) (CH3COO)(OH)3]}4·88H2O (1) and a polyanion Cu-linked {W11} chain Na6Cu2[(H2W11O38)(CH3COO)(OH)]·26H2O (2). Electronically, the redox properties show that both compounds 1 and 2 undergo irreversible reductions resulting in the demetalation of the compounds, whilst the magnetic behavior of 1 and 2 shows a weak antiferromagnetic and a stronger ferromagnetic coupling, respectively.

4.
Phys Chem Chem Phys ; 19(13): 8715-8725, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28317055

RESUMO

Ion pairs and solubility related to ion-pairing in water influence many processes in nature and in synthesis including efficient drug delivery, contaminant transport in the environment, and self-assembly of materials in water. Ion pairs are difficult to observe spectroscopically because they generally do not persist unless extreme solution conditions are applied. Here we demonstrate two advanced techniques coupled with computational studies that quantify the persistence of ion pairs in simple solutions and offer explanations for observed solubility trends. The system of study, ([(CH3)4N]+,Cs)8[M6O19] (M = Nb,Ta), is a set of unique polyoxometalate salts whose water solubility increases with increasing ion-pairing, contrary to most ionic salts. The techniques employed to characterize Cs+ association with [M6O19]8- and related clusters in simple aqueous media are 133Cs NMR (nuclear magnetic resonance) quadrupolar relaxation rate and PDF (pair distribution function) from X-ray scattering. The NMR measurements consistently showed more extensive ion-pairing of Cs+ with the Ta-analogue than the Nb-analogue, although the electrostatics of the ions should be identical. Computational studies also ascertained more persistent Cs+-[Ta6O19] ion pairs than Cs+-[Nb6O19] ion pairs, and bond energy decomposition analyses determined relativistic effects to be the differentiating factor between the two. These distinctions are likely responsible for many of the unexplained differences between aqueous Nb and Ta chemistry, while they are so similar in the solid state. The X-ray scattering studies show atomic level detail of this ion association that has not been prior observed, enabling confidence in our structures for calculations of Cs-cluster association energies. Moreover, detailed NMR studies allow quantification of the number of Cs+ associated with a single [Nb6O19]8- or [Ta6O19]8- anion which agrees with the PDF analyses.

5.
Inorg Chem ; 55(21): 11078-11088, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27753497

RESUMO

The iron Keggin ion is identified as a structural building block in both magnetite and ferrihydrite, two important iron oxide phases in nature and in technology. Discrete molecular forms of the iron Keggin ion that can be both manipulated in water and chemically converted to the related metal oxides are important for understanding growth mechanisms, in particular, nonclassical nucleation in which cluster building units are preserved in the aggregation and condensation processes. Here we describe two iron Keggin ion structures, formulated as [Bi6FeO4Fe12O12(OH)12(CF3COO)10(H2O)2]3+ (Kegg-1) and [Bi6FeO4Fe12O12(OH)12(CF3COO)12]1+ (Kegg-2). Experimental and simulated X-ray scattering studies show indefinite stability of these clusters in water from pH 1-3. The tridecameric iron Keggin-ion core is protected from hydrolysis by a synergistic effect of the capping Bi3+ cations and the trifluoroacetate ligands that, respectively, bond to the iron and bridge to the bismuth. By introducing electrons to the aqueous solution of clusters, we achieve complete separation of bismuth from the cluster, and the iron Keggin ion rapidly converts to magnetite and/or ferrihydrite, depending on the mechanism of reduction. In this strategy, we take advantage of the easily accessible reduction potential and crystallization energy of bismuth. Reduction was executed in bulk by chemical means, by voltammetry, and by secondary effects of transmission electron microscopy imaging of solutions. Prior, we showed a less stable analogue of the iron Keggin cluster converted to ferrihydrite simply upon dissolution. The prior and currently studied clusters with a range of reactivity provide a chemical system to study molecular cluster to metal oxide conversion processes in detail.

6.
Dalton Trans ; 43(41): 15295-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25189708

RESUMO

Small-angle X-ray scattering (SAXS) studies of aqueous [Ta6O19](8-) compared to prior studies of aqueous [Nb6O19](8-) reveals key differences in behaviour, which is likely at the root of the difficultly in developing polyoxotantalate chemistry. Specifically, where contact ion-pairing dominates between [Nb6O19](8-) and its counterions, solvent-separated ion-pairing between [Ta6O19](8-) and its counterions has been unveiled in the current study.

7.
Dalton Trans ; 43(13): 5190-9, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24513609

RESUMO

Two nanosized 2.6 nm Fe(III) substituted polyoxotungstates [Fe(III)13P8W60O227(OH)15(H2O)2](30-) (1) and [Fe(III)13P8W60O224(OH)12(PO4)4](33-) (2) are presented herein. Both clusters are synthesized from the reactions of trilacunary polyoxotungstate precursor [α-P2W15O56](12-) and FeCl3 under strict pH control at atmospheric pressure. The compounds are fully characterised in the solid state (FTIR and single-crystal XRD, elemental and thermogravimetric analyses), solution (cyclic voltammetry and UV-Vis spectroscopy) and in the gas phase (ESI-MS). An {Fe(III)13} core is present in both clusters which can be described as Archimedean solids (truncated tetrahedron, 1; elongated cuboctahedron, 2). 1 shows iron delivery properties coupled to a K(+)-triggered transformation of the {Fe13} core to a {K⊂Fe12} core in solution. Cyclic voltammetry shows the presence of independent W- and Fe-centred redox processes that support the stability of the clusters in solution. ESI-MS analyses confirm further the stability of 1 and 2 in the gas phase.

8.
J Am Chem Soc ; 136(8): 3304-11, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24499042

RESUMO

Typical catalysts for the electrolysis of water at low pH are based on precious metals (Pt for the cathode and IrO2 or RuO2 for the anode). However, these metals are rare and expensive, and hence lower cost and more abundant catalysts are needed if electrolytically produced hydrogen is to become more widely available. Herein, we show that electrode-film formation from aqueous solutions of first row transition metal ions at pH 1.6 can be induced under the action of an appropriate cell bias and that in the case of cobalt voltages across the cell in excess of 2 V lead to the formation of a pair of catalysts that show functional stability for oxygen evolution and proton reduction for over 24 h. We show that these films are metastable and that if the circuit is opened, they redissolve into the electrolyte bath with concomitant O2 and H2 evolution, such that the overall Faradaic efficiency for charge into the system versus amounts of gases obtained approaches unity for both O2 and H2. This work highlights the ability of first row transition metals to mediate heterogeneous electrolytic water splitting in acidic media by exploiting, rather than trying to avoid, the natural propensity of the catalysts to dissolve at the low pHs used. This in turn we hope will encourage others to examine the promise of metastable electrocatalysts based on abundant elements for a range of reactions for which they have traditionally been overlooked on account of their perceived instability under the prevailing conditions.

9.
Philos Trans A Math Phys Eng Sci ; 371(1996): 20110603, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23816912

RESUMO

This short review will illustrate that photosynthesis can provide a real contribution towards our sustain- able, green fuel requirements in the future. However, it is argued that the focus on biofuels is misplaced and that, in the longer term, investment in artificial photosynthesis will prove much more beneficial.


Assuntos
Biocombustíveis , Biomimética/métodos , Fotossíntese/fisiologia , Energia Renovável , Energia Solar
10.
Inorg Chem ; 52(16): 9284-9, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23889458

RESUMO

A new polyoxometalate (POM) cluster compound is presented which incorporates a trimeric assembly of Keggin-type germanotungstate fragments trapping a Johnson-type solid {Mn8} core. The mixed K-Li salt of the polyanion [(Mn(II)(H2O)3)2(K⊂{α-GeW10Mn(II)2O38}3)](19-) was characterized in the solid state and solution. The correlation of the assembly processes and the observed architecture of the "trinity" family of POMs is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...