Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991991

RESUMO

In this work, we present power and quality measurements of four transmissions using different emission technologies in an indoor environment, specifically a corridor, at the frequency of 868 MHz under two non-line-of-sight (NLOS) conditions. A narrowband (NB) continuous wave (CW) signal has been transmitted, and its received power has been measured with a spectrum analyzer, LoRa and Zigbee signals have also been transmitted, and their Received Signal Strength Indicator (RSSI) and bit error rate (BER) have been measured using the transceivers themselves; finally, a 20 MHz bandwidth 5G QPSK signal has also been transmitted and their quality parameters, such as SS-RSRP, SS-RSRQ and SS-RINR, have been measured using a SA. Thereafter, two fitting models, the Close-in (CI) model and the Floating-Intercept (FI) model, were used to analyze the path loss. The results show that slopes below 2 for the NLOS-1 zone and above 3 for the NLOS-2 zone have been found. Moreover, the CI and FI model behave very similarly in the NLOS-1 zone, while in the NLOS-2 zone, the CI model has poor accuracy in contrast to the FI model, which achieves the best accuracy in both NLOS situations. From these models, the power predicted with the FI model has been correlated with the measured BER value, and power margins have been established for which LoRa and Zigbee would each reach a BER greater than 5%; likewise, -18 dB has been established for the SS-RSRQ of 5G transmission.

2.
Sensors (Basel) ; 22(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560011

RESUMO

With the ongoing fifth-generation cellular network (5G) deployment, electromagnetic field exposure has become a critical concern. However, measurements are scarce, and accurate electromagnetic field reconstruction in a geographic region remains challenging. This work proposes a conditional generative adversarial network to address this issue. The main objective is to reconstruct the electromagnetic field exposure map accurately according to the environment's topology from a few sensors located in an outdoor urban environment. The model is trained to learn and estimate the propagation characteristics of the electromagnetic field according to the topology of a given environment. In addition, the conditional generative adversarial network-based electromagnetic field mapping is compared with simple kriging. Results show that the proposed method produces accurate estimates and is a promising solution for exposure map reconstruction.


Assuntos
Campos Eletromagnéticos
3.
Sensors (Basel) ; 22(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632124

RESUMO

The 5G Infrastructure Public Private Partnership (5GPPP) has recently published a white paper about 5G service indoors, since up to now, it had mainly focused on the outdoors. In an indoor environment, the requirements are different since the propagation mechanism differs from other scenarios. Furthermore, previous works have shown that space frequency block code (SFBC) techniques applied to multiple antennas improve performance compared to single-input single-output (SISO) systems. This paper presents an experimental study in an indoor environment regarding the performance of a massive multiple-input multiple-output (mMIMO) millimeter-wave (mmWave) system based on the 5G New Radio (NR) standard in two frequency bands. In a first step, the 38 and 65 GHz bands are compared by applying a low-complexity hybrid beamforming (HBF) algorithm. In a second step, the throughput and the maximum achievable distance are studied using a new algorithm that combines the SFBC technique and HBF. Results show, at 38 GHz with HBF and aggregated bandwidths (4 × 100 MHz), a maximum throughput of 4.30 Gbit/s up to 4.1 m. At 65 GHz, the SFBC + HBF algorithm improves the communication distance by 1.34, 1.61, or 1.75 m for bandwidths of 100, 200, or 400 MHz, respectively.


Assuntos
Algoritmos
4.
PLoS One ; 16(11): e0260060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34788331

RESUMO

Accurate characterization and simulation of electromagnetic propagation can be obtained by ray-tracing methods, which are based on a high frequency approximation to the Maxwell equations and describe the propagating field as a set of propagating rays, reflecting, diffracting and scattering over environment elements. However, this approach has been usually too computationally costly to be used in large and dynamic scenarios, but this situation is changing thanks the increasing availability of efficient ray-tracing libraries for graphical processing units. In this paper we present Opal, an electromagnetic propagation simulation tool implemented with ray-tracing on graphical processing units, which is part of the Veneris framework. Opal can be used as a stand-alone ray-tracing simulator, but its main strength lies in its integration with the game engine, which allows to generate customized 3D environments quickly and intuitively. We describe its most relevant features and provide implementation details, highlighting the different simulation types it supports and its extension possibilites. We provide application examples and validate the simulation on demanding scenarios, such as tunnels, where we compare the results with theoretical solutions and further discuss the tradeoffs between the simulation types and its performance.


Assuntos
Fenômenos Eletromagnéticos , Intuição , Bibliotecas , Reprodução
5.
Sensors (Basel) ; 21(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070879

RESUMO

The current trend in vehicles is to integrate a wide number of antennae and sensors operating at a variety of frequencies for sensing and communications. The integration of these antennae and sensors in the vehicle platform is complex because of the way in which the antenna radiation patterns interact with the vehicle structure and other antennae/sensors. Consequently, there is a need to study the radiation pattern of each antenna or, alternatively, the currents induced on the surface of the vehicle to optimize the integration of multiple antennae. The novel concept of differential imaging represents one method by which it is possible to obtain the surface current distribution without introducing any perturbing probe. The aim of this study was to develop and confirm the assumptions that underpin differential imaging by means of full-wave electromagnetic simulation, thereby providing additional verification of the concept. The simulation environment and parameters were selected to replicate the conditions in which real measurements were taken in previous studies. The simulations were performed using Ansys HFSS simulation software. The results confirm that the approximations are valid, and the differential currents are representative of the induced surface currents generated by a monopole positioned on the top of a vehicle.

6.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023093

RESUMO

The next generation of connected and autonomous vehicles will be equipped with high numbers of antennas operating in a wide frequency range for communications and environment sensing. The study of 3D spatial angular responses and the radiation patterns modified by vehicular structure will allow for better integration of the associated communication and sensing antennas. The use of near-field monostatic focusing, applied with frequency-dimension scale translation and differential imaging, offers a novel imaging application. The objective of this paper is to theoretically and experimentally study the method of obtaining currents produced by an antenna radiating on top of a vehicular platform using differential imaging. The experimental part of the study focuses on measuring a scaled target using an imaging system operating in a terahertz band-from 220 to 330 GHz-that matches a 5G frequency band according to frequency-dimension scale translation. The results show that the induced currents are properly estimated using this methodology, and that the influence of the bandwidth is assessed.

7.
Sensors (Basel) ; 20(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785025

RESUMO

Motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain activity patterns through electroencephalogram (EEG) signals to forecast user intention while performing movement imagination tasks. As the microscopic details of individuals' brains are directly shaped by their rich experiences, musicians can develop certain neurological characteristics, such as improved brain plasticity, following extensive musical training. Specifically, the advanced bimanual motor coordination that pianists exhibit means that they may interact more effectively with BCI systems than their non-musically trained counterparts; this could lead to personalized BCI strategies according to the users' previously detected skills. This work assessed the performance of pianists as they interacted with an MI-based BCI system and compared it with that of a control group. The Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA) machine learning algorithms were applied to the EEG signals for feature extraction and classification, respectively. The results revealed that the pianists achieved a higher level of BCI control by means of MI during the final trial (74.69%) compared to the control group (63.13%). The outcome indicates that musical training could enhance the performance of individuals using BCI systems.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Destreza Motora , Música , Adulto , Algoritmos , Encéfalo , Análise Discriminante , Eletroencefalografia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Movimento , Adulto Jovem
8.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168736

RESUMO

Millimeter-wave and terahertz frequencies offer unique characteristics to simultaneously obtain good spatial resolution and penetrability. In this paper, a robust near-field monostatic focusing technique is presented and successfully applied for the internal imaging of different penetrable geometries. These geometries and environments are related to the growing need to furnish new vehicles with radar-sensing devices that can visualize their surroundings in a clear and robust way. Sub-millimeter-wave radar sensing offers enhanced capabilities in providing information with a high level of accuracy and quality, even under adverse weather conditions. The aim of this paper was to research the capability of this radar system for imaging purposes from an analytical and experimental point of view. Two sets of measurements, using reference targets, were performed in the W band at 100 GHz (75 to 110 GHz) and terahertz band at 300 GHz (220 to 330 GHz). The results show spatial resolutions of millimeters in both the range (longitudinal) and the cross-range (transversal) dimensions for the two different imaging geometries in terms of the location of the transmitter and receiver (frontal or lateral views). The imaging quality in terms of spatial accuracy and target material parameter was investigated and optimized.

9.
J Acoust Soc Am ; 142(2): 902, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863562

RESUMO

A formulation based on the uniform theory of diffraction (UTD) for the analysis of the multiple-diffraction of a spherical sound wave caused by a series of wedges or knife-edges is hereby presented. The receiver location has to be considered at the same height as the preceding obstacles and at the same inter-obstacle distance from the last wedge. The solution, which is based on a UTD-physical optics formulation for radio-wave multiple-diffraction and has been validated through comparison with a geometrical theory of diffraction acoustic model, is computationally more efficient than other existing methods thanks to the fact that only single diffractions are involved in the calculations (high-order diffraction terms are not considered in the diffraction coefficients), thus allowing for the consideration of a great number of obstacles. In such a way, the proposed solution overcomes the limitations of previous works when multiple acoustic diffraction caused by an array of elements of equal height is to be analyzed. Therefore, the results can be applied in the study of sound propagation in scenarios where multiple-diffraction over a series of edges of equal height and periodical spacing has to be considered, such as the typical audience seating of a concert hall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...