Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 166: 171037, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301481

RESUMO

Prolactin (PRL) is a polypeptide hormone that has been reported to play a significant role in neuroprotection against neuronal excitotoxicity produced by glutamate (Glu) or kainic acid (KA) in both, in vitro and in vivo models. However, the molecular mechanisms involved in PRL's neuroprotective effects in the hippocampus have not been completely elucidated. The aim of the present study was to assess the signaling pathways involved in PRL neuroprotection against excitotoxicity. Primary rat hippocampal neuronal cell cultures were used to assess PRL-induced signaling pathway activation. The effects of PRL on neuronal viability, as well as its effects on activation of key regulatory pathways, phosphoinositide 3-kinases/Protein Kinase B (PI3K/AKT) and glycogen synthase kinase 3ß / nuclear factor kappa B (GSK3ß/NF-κB), were evaluated under conditions of Glutamate-induced excitotoxicity. Additionally, the effect on downstream regulated genes such as Bcl-2 and Nrf2, was assessed. Here, we show that the PI3K/AKT signaling pathway is activated by PRL treatment during excitotoxicity, promoting neuronal survival through upregulation of active AKT and GSK3ß/NF-κB, resulting in induction of Bcl-2 and Nrf2 gene expression. Inhibition of the PI3K/AKT signaling pathway abrogated the protective effect of PRL against Glu-induced neuronal death. Overall, results indicate that the neuroprotective actions of PRL are mediated in part, by the activation of the AKT pathway and survival genes. Our data support the idea that PRL could be useful as a potential neuroprotective agent in different neurological and neurodegenerative diseases.


Assuntos
NF-kappa B , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuroproteção , Prolactina/farmacologia , Prolactina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipocampo/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurônios/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo
2.
Neurosci Lett ; 810: 137344, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37315731

RESUMO

The aim of this study was to determine the effect of prolactin (PRL) on intracellular calcium (Ca2+) concentration and its neuroprotective role in a model of kainic acid (KA) excitotoxicity in primary cultures of hippocampal neurons. Cell viability and intracellular Ca2+ concentrations were determined by MTT and Fura-2 assays, respectively, either after induction by KA as an agonist or after treatment with NBQX antagonist alone or in combination with PRL administration. Expression of ionotropic glutamatergic receptors (iGluRs) subunits in neuronal cells was determined by RT-qPCR. Dose-response treatments with KA or glutamate (Glu), the latter used as endogenous agonist control, induced a significant increase in neuronal intracellular Ca2+ concentration followed by a significant decrease in hippocampal neuronal viability. Administration of PRL induced a significant increase in neuronal viability after treatment with KA. Furthermore, administration of PRL decreased intracellular Ca2+ concentrations induced by KA treatment. Independent administration of the AMPAR-KAR antagonist reversed cell death and reduced intracellular Ca2+ concentration in a similar manner as PRL. Additionally, mRNA expression of AMPAR, KAR and NMDAR subtypes were detected in hippocampal neurons; however, no significant changes in iGluRs subunit expression were observed due to excitotoxicity or PRL treatment. The results suggest that PRL inhibits the increase in intracellular Ca2+ concentration induced by KA, leading to neuroprotection.


Assuntos
Ácido Caínico , Prolactina , Prolactina/farmacologia , Ácido Caínico/toxicidade , Neuroproteção , Hipocampo/metabolismo , Neurônios/metabolismo
3.
Radiat Environ Biophys ; 61(3): 407-423, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35819511

RESUMO

The clinical information on the relationship between the cardiac contact distance (CCD), the maximum dose (Dmax) delivered to the left anterior descending (LAD) coronary artery and the mean heart dose has mostly focused on patients with breast-conserving surgery (BCS), being scarce in postmastectomy patients. The aim of this study is to determine the association between the CCD and the Dmax delivered to the LAD. The secondary objective was to evaluate the dosimetric results of comparing three-dimensional conformal radiotherapy (3D-CRT) to intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques for post mastectomized breast cancer patients with irradiation to the left chest wall. 53 cases of women who received adjuvant standard fractionated postmastectomy radiotherapy (PMRT) were used. Three types of plans were created for each patient: 3D-CRT, seven equidistant IMRT fields, and four partial VMAT arcs. Correlations were evaluated using Pearson's correlation coefficient. Plans made with IMRT and VMAT showed improved homogeneity and conformity. Associations between CCD and Dmax to LAD were positive for all three plan types. Compared to 3D-CRT, the modulated intensity plans obtained better dose homogeneity and conformity to the target volume. The LAD and heart doses were significantly lower for IMRT and VMAT plans. The CCD can be used as a predictor of the maximum and mean doses of the LAD. Modulated intensity techniques allow for better dose distribution and dose reduction to the heart and LAD.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Neoplasias da Mama/radioterapia , Vasos Coronários , Feminino , Humanos , Mastectomia , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Front Neuroendocrinol ; 61: 100913, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766566

RESUMO

It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Feminino , Hipocampo , Humanos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Prolactina
5.
Neuroscience ; 461: 180-193, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647379

RESUMO

Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.


Assuntos
Fármacos Neuroprotetores , Prolactina , Ácido Glutâmico/toxicidade , Neurônios , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Receptores de Neurotransmissores
6.
Curr Microbiol ; 67(3): 362-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23649743

RESUMO

Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Transcriptoma , Genes Bacterianos , Reação em Cadeia da Polimerase em Tempo Real
7.
Nat Prod Res ; 27(13): 1174-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22963268

RESUMO

From the hexane extract of stem bark of Diospyros anisandra was isolated a new plumbagin dimer, epoxide of zeylanone, along with 14 known compounds, including seven naphthoquinones, four triterpenoids and three sesquiterpenoids. The structures were elucidated by the application of IR, UV, MS, 1D- and 2D-NMR spectroscopic analysis and by comparison with literature data.


Assuntos
Diospyros/química , Naftoquinonas/química , Estrutura Molecular , Casca de Planta/química , Caules de Planta/química
8.
J Ethnopharmacol ; 109(3): 435-41, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17000069

RESUMO

The aim of the present study was to evaluate the potential antimicrobial activity of 14 plants used in northeast México for the treatment of respiratory diseases, against drug-sensitive and drug-resistant strains of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae type b and Mycobacterium tuberculosis. Forty-eight organic and aqueous extracts were tested against these bacterial strains using a broth microdilution test. No aqueous extracts showed antimicrobial activity, whereas most of the organic extracts presented antimicrobial activity against at least one of the drug-resistant microorganisms tested. Methanol-based extracts from the roots and leaves of Leucophyllum frutescens and ethyl ether extract from the roots of Chrysanctinia mexicana showed the greatest antimicrobial activity against the drug-resistant strain of Mycobacterium tuberculosis; the minimal inhibitory concentration (MIC) were 62.5, 125 and 62.5 microg/mL, respectively; methanol-based extract from the leaves of Cordia boissieri showed the best antimicrobial activity against the drug-resistant strain of Staphylococcus aureus (MIC 250 microg/mL); the hexane-based extract from the fruits of Schinus molle showed considerable antimicrobial activity against the drug-resistant strain of Streptococcus pneumoniae (MIC 62.5 microg/mL). This study supports that selecting plants by ethnobotanical criteria enhances the possibility of finding species with activity against resistant microorganisms.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Extratos Vegetais/farmacologia , Farmacorresistência Bacteriana Múltipla , Haemophilus influenzae/efeitos dos fármacos , Medicina Tradicional , México , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Plantas Medicinais/química , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...