Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055702

RESUMO

Stichopus cf. horrens is an economically important sea cucumber species in Southeast Asia due to their presumed nutritional and medicinal benefits. However, compared to other sea cucumbers such as Apostichopus japonicus, there are no biochemical studies on which compounds contribute to the purported bioactivities of S. cf. horrens. To address this, a high-throughput characterization of the global metabolite profile of the species was performed through LC-MS/MS experiments and utilizing open-access platforms such as GNPS, XCMS, and metaboAnalyst. Bioinformatics-based molecular networking and chemometrics revealed the abundance of phospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and phosphatidylserines (PSs) in the crude samples. Body wall extracts were observed to have higher levels of structural, diacylated PCs, while the viscera have higher relative abundance of single-tail PCs and PEs that could be involved in digestion via nutrient absorption and transport for sea cucumbers. PEs and sphingolipids could also be implicated in the ecological response and morphological transformations of S. cf. horrens in the presence of predatory and other environmental stress. Interestingly, terpenoid glycosides and saponins with reported anti-cancer benefits were significantly localized in the body wall. The sulfated alkanes and sterols present in S. cf. horrens bear similarity to known kairomones and other signaling molecules. All in all, the results provide a baseline metabolomic profile of S. cf. horrens that may further be used for comparative and exploratory studies and suggest the untapped potential of S. cf. horrens as a source of bioactive molecules.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Cromatografia Líquida , Filipinas , Espectrometria de Massas em Tandem , Metabolômica
2.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771057

RESUMO

Underutilized biowaste materials are investigated for their potential as sustainable textile colorants through an approach based on mass spectrometry, bioinformatics, and chemometrics. In this study, colorful decoctions were prepared from the outer bark of Eucalyptus deglupta and fruit peels of Syzygium samarangense, Syzygium malaccense, Diospyros discolor, and Dillenia philippinensis. Textile dyeing was performed along with liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics to determine the small molecules responsible for the observed colors. Global Natural Products Social Molecular Networking (GNPS) guided the annotation of black-producing proanthocyanidins in D. philippinensis and E. deglupta through complexation with FeSO4 mordant. Flavonoids from the yellow-colored D. philippinensis extracts were found to be similar to those in Terminalia catappa, a known traditional dye source. A higher intensity of epicatechin in E. deglupta produced a red-brown color in the presence of Cu2+. Furthermore, Syzygium fruit peels have poor wash-fastness in cotton fibers, but bioactive chalcone unique to S. samarangense samples may be a potential nutritional food colorant. Unsupervised PCA and supervised OPLS-DA chemometrics distinguished chemical features that affect dyeing properties beyond the observed color. These findings, along with growing data on natural dyes, could guide future research on sustainable colorants.


Assuntos
Cromatografia Líquida de Alta Pressão , Corantes/química , Eliminação de Resíduos de Serviços de Saúde , Espectrometria de Massas em Tandem , Produtos Biológicos , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Estrutura Molecular , Espectrometria de Massas em Tandem/métodos , Têxteis
3.
PLoS One ; 16(5): e0247289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014935

RESUMO

Philippine garlic (Allium sativum L.) is arguably known to pack flavor and aroma in smaller bulbs compared to imported varieties saturating the local market. In this study, ethanolic extracts of Philippine garlic cultivars were profiled using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF). γ-Glu dipeptides, oligosaccharides and lipids were determined in Philippine garlic cultivars through bioinformatics analysis in GNPS Molecular Networking Platform and fragmentation analysis. Multivariate statistical analysis using XCMS Online showed the abundance of γ-Glu allyl cysteine in Batanes-sourced garlic while γ-Glu propenyl cysteine, γ-Glu methyl cysteine, and alliin are enriched in the Ilocos cultivar. Principal component analysis showed that the γ-Glu dipeptides found in local garlic influenced their distinct separation across PC1 from imported varieties. This presence of high levels of γ-Glu dipeptides and probiotic oligosaccharides may potentially contribute to the superior flavor and nutritional benefits of Philippine garlic.


Assuntos
Alho/metabolismo , Metaboloma , Cisteína/análogos & derivados , Cisteína/análise , Aromatizantes/análise , Alho/química , Óleos Voláteis/análise
4.
Rapid Commun Mass Spectrom ; 35(7): e9037, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33369891

RESUMO

RATIONALE: High-throughput liquid chromatography/mass spectrometry (LC/MS) analysis presents an interesting platform for natural dyes research. A particular example is the assessment of the dynamic changes in fermentation mixtures of Philippine Indigofera, and in the investigation of commercially available indigo prepared using traditional and optimized methods. METHODS: Leaves from Indigofera tinctoria and Indigofera suffruticosa were subjected to methanolic extraction and aqueous fermentation for 48 h. Indigo powders prepared following 2-day and 15-day fermentation were also subjected to profiling using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). MS2 spectra were annotated through a library search in the community-curated Global Natural Products Social Molecular Networking (GNPS). Spectra with no library hits in GNPS were annotated by analysis of their fragmentation pathways. RESULTS: UHPLC/MS-based detection and fragmentation analysis led to characterization of leucoindigo and the unreported tryptanthrin intermediate, 5a-hydroxy-5,5a-dihydroindolo[2,1-b]quinazoline-6,12-dione, in the fermentation extract of I. tinctoria leaves. Indigo-associated metabolites were absent in an Indigofera specimen in Laguna Province, which explained why it did not produce blue dye. Locally produced indigo was abundant in indigotin and indirubin, differentiated based on product ions with the corresponding predicted fragmentation pattern. The relative intensity of indigotin, however, decreased with the traditional process of extended fermentation to produce indigo. CONCLUSIONS: The study is the first to demonstrate simultaneous MS-based analysis of reaction intermediates, indigotin dye, side products, and catabolites on actively transforming fermentation extracts of I. tinctoria. New results include annotated mass spectra for leucoindigo, and for the unreported 5a-hydroxy-5,5a-dihydroindolo[2,1-b]quinazoline-6,12-dione, which is probably an intermediate in tryptranthrin synthesis. The proposed fragmentation schemes could guide the annotation of analogous compounds in complex mixtures.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Indigofera/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Extratos Vegetais/química , Corantes/química , Índigo Carmim/química , Indigofera/metabolismo , Filipinas , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...