Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(9)2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758531

RESUMO

People often alternate between bouts of walking and running, for instance, when adults participate in recreational activities. Transitioning between activities can be challenging for prosthesis users because existing prosthetic feet are not well-suited for both tasks. Meanwhile, switching between prostheses for different tasks is often impractical. Collectively, these challenges can present barriers to physical activity participation for people with limb loss, which can negatively impact social or physical health. This work describes the development and evaluation of a passive bimodal prosthetic foot prototype with different configurations and stiffnesses for walking and running. Users rated the bimodal prosthesis higher for standing and walking compared to a running prosthesis (+2.3 for both tasks on a seven-point Likert scale). Users rated the bimodal prosthesis higher for running compared to a walking prosthesis (+1.7 and +0.5 for 2.0 and 2.5 m/s running, respectively). Changing from walking to running mode increased the device's stiffness by 23-84%, depending on the user's preference. Users could switch between bimodal prosthesis walking and running modes quickly (21.3 ± 12.0 s). Overall, the preliminary results were encouraging in terms of user satisfaction, stiffness change between modes, and mode-switching speed. These findings motivate future exploration of this bimodal prosthesis concept.


Assuntos
Membros Artificiais , , Desenho de Prótese , Corrida , Caminhada , Corrida/fisiologia , Humanos , Masculino , Pé/fisiologia , Adulto , Feminino , Pessoa de Meia-Idade , Fenômenos Biomecânicos
2.
J Biomech ; 162: 111877, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007867

RESUMO

Studies of human locomotion have observed asymmetries in lower-limb kinematics, especially at the more distal joints. However, it is unclear whether these asymmetries are related to functional differences between the dominant and non-dominant limb. This study aimed to determine the effect of lower-limb dominance on foot kinematics during human locomotion. Range of motion for the metatarsophalangeal joint (MPJ) and medial longitudinal arch (MLA), as well as time duration of windlass mechanism engagement, were recorded from healthy young adults (N = 12) across a range of treadmill walking and running speeds. On the group level, there were no differences in MPJ or MLA range of motion, or windlass engagement timing, between the dominant and non-dominant limb (p > 0.05). While not explained by limb dominance, between-limb differences in MPJ and MLA ranges of motion were observed for individual participants on the order of ∼2-6°, which could be clinically relevant or impact interpretation of research data.


Assuntos
Corrida , Caminhada , Adulto Jovem , Humanos , Fenômenos Biomecânicos , Extremidade Inferior , , Marcha
3.
J Biomech ; 162: 111897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103312

RESUMO

Quasi-stiffness describes the intersegmental joint moment-angle relationship throughout the progression of a task. Previous work has explored sagittal-plane ankle quasi-stiffness and its application for the development of powered lower-limb assistive devices. However, frontal-plane quasi-stiffness remains largely unexplored but has important implications for the development of exoskeletons since clinical populations often walk with wider steps and rely on frontal-plane balance recovery strategies at the hip and ankle. This study aimed to characterize frontal-plane hip and ankle quasi-stiffness during walking and determine how step width affects quasi-stiffness in both the frontal and sagittal planes. Kinematic and kinetic data were collected and quasi-stiffness values computed for healthy young adults (n = 15) during treadmill walking across a range of step widths. We identified specific subphases of the gait cycle that exhibit linear and quadratic frontal-plane quasi-stiffness approximations for the hip and ankle, respectively. In addition, we found that at wider step widths, sagittal-plane ankle quasi-stiffness increased during early stance (∼12-35% gait cycle), sagittal-plane hip quasi-stiffness decreased in late stance (∼40-55% gait cycle) and frontal-plane hip quasi-stiffness decreased during terminal stance (∼48-65% gait cycle). These results provide a framework for further exploration of frontal-plane quasi-stiffness, lend insight into how quasi-stiffness may relate to balance control at various step widths, and motivate the development of stiffness-modulating assistive devices to improve balance related outcomes.


Assuntos
Marcha , Caminhada , Adulto Jovem , Humanos , Tornozelo , Extremidade Inferior , Articulação do Tornozelo , Fenômenos Biomecânicos
4.
J Biomech Eng ; 145(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661069

RESUMO

Walking is more difficult for transtibial prosthesis users, partly due to a lack of calf muscle function. Powered ankle prostheses can partially restore calf muscle function, specifically push-off power from the soleus. But one limitation of a powered ankle is that emulating the soleus does not restore the multi-articular function of the gastrocnemius. This missing function may explain elevated hip and knee muscle demands observed in individuals walking on powered ankles. These elevated demands can make walking more fatiguing and impact mobility. Adding an Artificial Gastrocnemius to a powered ankle might improve gait for prosthesis users by reducing the prosthesis-side hip and knee demands. This work investigates if an Artificial Gastrocnemius reduced prosthesis-side hip or knee demands for individuals walking with a powered ankle providing high levels of push-off. We performed two case series studies that examined the effects that a passive elastic Artificial Gastrocnemius has on joint moment-impulses when prosthesis users walked with a powered ankle. We found that hip moment-impulse was reduced during stance when walking with an Artificial Gastrocnemius for six of seven participants. The Artificial Gastrocnemius effects on knee kinetics were variable and subject-specific, but in general, it did not reduce the knee flexor or extensor demands. The Artificial Gastrocnemius should be further explored to determine if reduced hip demands improve mobility or the user's quality of life by increasing the distance they can walk, increasing walking economy, or leading to increased physical activity or community engagement.


Assuntos
Membros Artificiais , Prótese Articular , Humanos , Tornozelo , Qualidade de Vida , Fenômenos Biomecânicos , Marcha/fisiologia , Caminhada/fisiologia , Articulação do Tornozelo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...