Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967517

RESUMO

Underwater germination could risk seedling survival, suggesting the need for control through seed perception of environmental cues. These cues include diurnally alternating temperatures tied to drained soils or shallow water tables. We examined high-amplitude alternating temperatures impact on underwater germination. Besides, the conditions experimented by seeds in the soil (e.g. hydration/dehydration phases) change their germinability so we tested if osmopriming could affect underwater germination. We worked with Echinochloa colona seedlots from extensive crop fields, exposing seeds to sequential submergence and drained treatments in combination with cues that promote germination. While a 10°C difference between maximum and minimum daily temperatures maximised germination in drained conditions, higher amplitudes (>15°C) alternating temperatures promoted E. colona underwater germination under hypoxic water (pO2 <4.1kPa). KNO3 osmopriming in drained conditions promoted later underwater germination even under hypoxic water; however, PEG 6000 osmopriming induced seeds to enter secondary dormancy inhibiting underwater germination. KNO3 improved E. colona underwater germination under air-equilibrated floodwater (pO2 : 16.5-17.4kPa) yet not under hypoxic conditions. This suggests that germination can proceed in flooded nitrate-fertile soils as long as it remains aerobic. Hypoxic submergence did not inhibit the induction of hypersensitivity to light in E. colona seeds. This research expands our understanding of wetland seed germination ecophysiology, shedding light on the inducible nature of underwater germination in hydrophyte weeds.


Assuntos
Echinochloa , Germinação , Germinação/fisiologia , Echinochloa/fisiologia , Nitratos/farmacologia , Temperatura , Água/farmacologia , Sementes , Solo
2.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814354

RESUMO

Flooding significantly hampers global forage production. In flood-prone regions, Lotus tenuis and Lotus corniculatus are common forage legumes, yet little is known about their responses to partial or complete submergence. To address this, we evaluated 10 Lotus accessions subjected to 11days of either partial or complete submergence, analysing growth traits related to tolerance and recovery after de-submergence. Principal component analyses revealed that submergence associated growth parameters were linked to L. corniculatus accessions, whereas recovery was associated with L. tenuis accessions. Notably, in L. tenuis , recovery from complete submergence positively correlated with leaf mass fraction but negatively with root mass fraction, showing an opposite pattern than in L. corniculatus . Encouragingly, no trade-off was found between inherent growth capacity and submergence tolerance (both partial and complete) or recovery ability, suggesting genetic selection for increased tolerance would not compromise growth potential. L. tenuis exhibited accessions with both partial and complete submergence tolerance, making them versatile for flood-prone environments, whereas L. corniculatus accessions were better suited for partial submergence. These findings offer valuable insights to enhance forage production in flood-prone areas and guide the selection of appropriate Lotus accessions for specific flood conditions.


Assuntos
Lotus , Lotus/genética , Inundações
3.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297722

RESUMO

Climate models predict that plants will face extreme fluctuations in water availability in future global change scenarios. Then, forage production will be more frequently subjected to the destabilizing pressure of sequentially occurring waterlogging and drought events. While the isolated effects of drought (D) and waterlogging (WL) are well characterized, little is known about the consequences when both stresses occur sequentially. We hypothesized that plants sequentially subjected to opposite water scenarios (D followed by WL or vice versa) are less stress tolerant than plants experiencing repetitions of the same type of water stress (i.e., D + D or WL + WL) due to contrasting acclimation and allocation to either shoots (WL) or roots (D). Chloris gayana (a tropical forage grass capable of tolerating either D and WL) plants were randomly assigned to nine treatments (a sequence of two stress rounds-WL or D-each followed by a recovery phase at field capacity). Relative growth rates and allometric responses were measured after each stress round and recovery period. In the first round of stress, both WL and D reduced plant RGR similarly, despite their allocation being opposite-prioritizing shoots or roots under WL and D, respectively. The high recovery displayed after either WL or D overrode any possible acclimation of the plants facing a second round of water stress. We conclude that the tolerance of C. gayana to sequential water stress (either for WL or D) is likely to depend more heavily on its recovery ability than on its previous adjustment to any stress scenario that may evoke memory responses. Knowledge like this could help improve forage grass breeding and the selection of cultivars for poorly drained soils subject to sequential stress events.

4.
Plants (Basel) ; 9(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326202

RESUMO

Submergence is a severe form of stress for most plants. Lotus japonicus is a model legume with potential use in assisting breeding programs of closely related forage Lotus species. Twelve L. japonicus genotypes (10 recombinant inbred lines (RILs) and 2 parental accessions) with different constitutive shoot to root dry mass ratios (S:R) were subjected to 7 days of submergence in clear water and allowed to recover for two weeks post-submergence; a set of non-submerged plants served as controls. Relative growth rate (RGR) was used to indicate the recovery ability of the plants. Leaf relative water content (RWC), stomatal conductance (gs), greenness of basal and apical leaves, and chlorophyll fluorescence (Fv/Fm, as a measure of photoinhibition) were monitored during recovery, and relationships among these variables and RGR were explored across genotypes. The main results showed (i) variation in recovery ability (RGR) from short-term complete submergence among genotypes, (ii) a trade-off between growth during vs. after the stress indicated by a negative correlation between RGR during submergence and RGR post-submergence, (iii) an inverse relationship between RGR during recovery and S:R upon de-submergence, (iv) positive relationships between RGR at early recovery and RWC and gs, which were negatively related to S:R, suggesting this parameter as a good estimator of plant water balance post-submergence, (v) chlorophyll retention allowed fast recovery as revealed by the positive relationship between greenness of basal and apical leaves and RGR during the first recovery week, and (vi) full repair of the submergence-damaged photosynthetic apparatus occurred more slowly (second recovery week) than full recovery of plant water relations. The inclusion of these traits contributing to submergence recovery in L. japonicus should be considered to speed up the breeding process of the closely related forage Lotus spp. used in current agriculture.

5.
Environ Monit Assess ; 187(3): 125, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25697311

RESUMO

Companies mining oil sands in Alberta (Canada) face the challenge of reclaiming wetlands under water use restrictions. Wetland reclamation after mining will generate marshes characterized by elevated salinity and residual hydrocarbons. Oil sands wetlands are also impoverished in forbs, suggesting that their establishment may be constrained by water chemistry. We transplanted skullcap, mint, and smartweed plants into experimental trenches that simulated two possible reclamation scenarios: wetlands amended with on-site freshwater or with oil sands processed water (OSPW). The main scientific question was is OSPW a suitable water amendment as freshwater for reclaiming wetland forb habitat? As a surrogate of plant health, we studied plant ecophysiology (gas exchange, leaf fluorescence), leaf chemistry, and plant growth. Results showed that there were no differences in skullcap mineral contents under either treatment; however, mint and smartweed plants subjected to OSPW had a significantly higher Na content than those under freshwater. Smartweed dark-adapted leaf fluorescence showed a reduced photochemistry in OSPW relative to plants in freshwater. Mint leaves exhibited lower stomatal conductance in OSPW than in freshwater, a condition that negatively affected transpiration and carboxylation. Skullcap plants grown in OSPW had lower net CO2 assimilation rates than those in freshwater but did not show any other ecophysiological difference between treatments. Mint plants experienced growth reductions (i.e., shoot height) in OSPW. Our results show, for the first time in the literature, that plants photosynthetic capacity was negatively affected by OSPW. Conditions in OSPW proved to be suitable for establishment as transplanted forbs showed 100 % survival after the first growing season. However, impaired physiological functions in plants subjected to OSPW indicated that OSPW amendment created a less hospitable habitat for wetland forbs than freshwater.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Alberta , Monitoramento Ambiental , Água Doce , Mineração , Campos de Petróleo e Gás , Desenvolvimento Vegetal , Plantas , Salinidade
6.
J Environ Manage ; 142: 1-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24794519

RESUMO

Germination photoinhibition is not a recognized cause of revegetation failure; yet prolonged sunlight exposure can inhibit germination of several grass species. This research addressed susceptibility to photoinhibition of selected native grass species used to restore Canadian prairies, and reclamation treatments to alter environmental conditions in order to release seeds from photoinhibition. Under laboratory conditions effects of photoinhibition were tested on the ability of seeds to germinate at low water potential and effects of daily alternating temperatures and nitrates to break photoinhibition. Whether surficial mulch can release seeds from photoinhibition was assessed in a field experiment. Germination photoinhibition was evident in Festuca hallii and Koeleria macrantha seeds even under very low irradiances. The prolonged exposure to light decreased germination rates and ability of seeds to germinate at low water potentials. Daily fluctuating temperatures released a fraction of Bromus carinatus and Elymus trachycaulus seeds from photoinhibition yet did not improve F. hallii or K. macrantha germinability. Nitrates failed to break seed photoinhibition in all species tested. In the field experiment, mulched F. hallii seeds (covered with an erosion control blanket) showed a tenfold increase in germination percentages relative to seeds exposed to direct sunlight, indicating the facilitative effects of mulching on attenuation of the light environment. We conclude that germination photoinhibition as a cause of emergence failures in land reclamation where seed is broadcast or shallow seeded should be recognized and germination photoinhibition included in the decision making process to select revegetation seeding techniques.


Assuntos
Germinação/efeitos da radiação , Poaceae/efeitos da radiação , Luz Solar/efeitos adversos , Agricultura/métodos , Canadá , Conservação dos Recursos Naturais , Poaceae/fisiologia , Sementes/fisiologia , Sementes/efeitos da radiação , Temperatura , Água
7.
J Environ Manage ; 139: 154-63, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24694323

RESUMO

The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region.


Assuntos
Carex (Planta)/crescimento & desenvolvimento , Resíduos Industriais , Campos de Petróleo e Gás , Solo , Alberta , Biomassa , Carex (Planta)/metabolismo , Clorofila/metabolismo , Clorofila A , Recuperação e Remediação Ambiental , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...