Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 97(10): 4152-4159, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31504579

RESUMO

In pig production, efficiency is benefiting from uniform growth in pens resulting in single deliveries from a pen of possibly all animals in the targeted weight range. Abnormalities, like pneumonia or aberrant growth, reduce production efficiency as it reduces the uniformity and might cause multiple deliveries per batch and pigs delivered with a low meat yield or outside the targeted weight range. Early identification of pigs prone to develop these abnormalities, for example, at the onset of the growing-finishing phase, would help to prevent heterogeneous pens through management interventions. Data about previous production cycles at the farm combined with data from the piglet's own history may help in identifying these abnormalities. The aim of this study, therefore, was to predict at the onset of the growing-finishing phase, that is, at 3 mo in advance, deviant pigs at slaughter with a machine-learning technique called boosted trees. The dataset used was extracted from the farm management system of a research center. It contained over 70,000 records of individual pigs born between 2004 and 2016, including information on, for example, offspring, litter size, transfer dates between production stages, their respective locations within the barns, and individual live-weights at several production stages. Results obtained on an independent test set showed that at a 90% specificity rate, the sensitivity was 16% for low meat percentage, 20% for pneumonia and 36% for low lifetime growth rate. For low lifetime growth rate, this meant an almost three times increase in positive predictive value compared to the current situation. From these results, it was concluded that routine performance information available at the onset of the growing-finishing phase combined with data about previous production cycles formed a moderate base to identify pigs prone to develop pneumonia (AUC > 0.60) and a good base to identify pigs prone to develop growth aberrations (AUC > 0.70) during the growing-finishing phase. The mentioned information, however, was not a sufficient base to identify pigs prone to develop low meat percentage (AUC < 0.60). The shown ability to identify growth aberrations and pneumonia can be considered a good first step towards the development of an early warning system for pigs in the growing-finishing phase.


Assuntos
Ração Animal/análise , Abrigo para Animais/normas , Pneumonia/veterinária , Carne Vermelha/análise , Doenças dos Suínos/prevenção & controle , Criação de Animais Domésticos , Animais , Composição Corporal , Meio Ambiente , Feminino , Aprendizado de Máquina , Masculino , Pneumonia/prevenção & controle , Suínos , Árvores
2.
Sensors (Basel) ; 10(9): 7991-8009, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163637

RESUMO

When cows on dairy farms are milked with an automatic milking system or in high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without sensors. The objective of this paper is to describe the performance demands of sensor systems to detect CM and evaluats the current performance of these sensor systems. Several detection models based on different sensors were studied in the past. When evaluating these models, three factors are important: performance (in terms of sensitivity and specificity), the time window and the similarity of the study data with real farm data. A CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. The time window should not be longer than 48 hours and study circumstances should be as similar to practical farm circumstances as possible. The study design should comprise more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been published with a description and evaluation of CM detection models. There is a large variation in the use of sensors and algorithms. All this makes these results not very comparable. There is a also large difference in performance between the detection models and also a large variation in time windows used and little similarity between study data. Therefore, it is difficult to compare the overall performance of the different CM detection models. The sensitivity and specificity found in the different studies could, for a large part, be explained in differences in the used time window. None of the described studies satisfied the demands for CM detection models.


Assuntos
Técnicas Biossensoriais/veterinária , Indústria de Laticínios/instrumentação , Mastite Bovina/diagnóstico , Algoritmos , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Bovinos , Indústria de Laticínios/métodos , Feminino , Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...