Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(60): 101659-101671, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254194

RESUMO

BACKGROUND AND PURPOSE: Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were performed on cultured rat cardiomyoblast (H9C2) cells, isolated perfused working rat hearts and anaesthetized open-chest rats. KEY RESULTS: Cell viability increased significantly after treatment with 10 and 50 nM of G peptide. In hypoxia and reoxygenation conditions, exposure of H9C2 cells to G peptide decreased cell apoptosis and mitochondrial reactive oxygen species (ROS) production. Postischemic infusion of G peptide reduced cell membrane damage and improved functional recovery in isolated hearts during reperfusion. These effects were accompanied by enhanced restoration of myocardial metabolic state. Treatment with G peptide at the onset of reperfusion induced minor changes in hemodynamic variables but significantly reduced infarct size and plasma levels of necrosis markers. CONCLUSION AND IMPLICATIONS: These findings suggest that G peptide is effective in mitigating cardiac I/R injury, thereby providing a rationale for promising tool for the treatment of cardiovascular diseases.

2.
Oncotarget ; 8(13): 21241-21252, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28177906

RESUMO

BACKGROUND AND PURPOSE: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method. The chemical structure was identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were conducted using a rat model of I/R injury in vivo, isolated perfused rat hearts ex vivo and cultured rat cardiomyoblast H9C2 cells in vitro. Cardiac function, infarct size, myocardial energy metabolism, hemodynamic parameters, plasma levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) were measured in order to evaluate the effects of G1 on myocardial I/R injury. KEY RESULTS: Treatment with G1 increased cell viability in a dose-dependent manner, inhibited cell apoptosis and excessive mitochondrial reactive oxygen species (ROS) production in response to oxidative stress in H9C2 cells. Pre- or postischemic infusion of G1 enhanced functional and metabolic recovery during reperfusion of the ischemic isolated rat heart. Administration of G1 at the onset of reperfusion significantly reduced infarct size and plasma levels of CK-MB and LDH in rats subjected to myocardial I/R injury. CONCLUSIONS AND IMPLICATIONS: These data provide the first evidence for cardioprotective activity of galanin G1 against myocardial I/R injury. Therefore, peptide G1 may represent a promising treatment strategy for ischemic heart disease.


Assuntos
Galanina/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Preparação de Coração Isolado , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...