Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 260: 104271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056088

RESUMO

Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Plásticos , Microplásticos , Baías , Estuários , Biodiversidade , Polímeros , Água , Monitoramento Ambiental , Sedimentos Geológicos
2.
Sci Total Environ ; 895: 165155, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379932

RESUMO

Drinking water treatment plants (DWTPs) are intended to provide safe water to the municipality, typically by treating surface waters from rivers, lakes, and streams. Regrettably, all of these water sources for DWTPs have been reported to be contaminated by microplastics (MPs). Hence, there is an urgent need to investigate the removal efficiencies of MPs from raw waters in the conventional DWTPs anticipating public health concerns. In this experiment, MPs in the raw and treated waters of the three major DWTPs of Bangladesh, having different water treatment processes, were evaluated. The concentrations of MPs in the inlet points of Saidabad Water Treatment Plant phase-1 and 2 (SWTP-1 and SWTP-2), which share a similar water source of the Shitalakshya River, were 25.7 ± 9.8 and 26.01 ± 9.8 items L-1. The third plant, Padma Water Treatment Plant (PWTP) utilizes water from the Padma River and had an initial MP concentration of 6.2 ± 1.6 items L-1. The studied DWTPs, with their existing treatment processes, were found to reduce the MP loads substantially. The final MP concentrations in treated waters of SWTP-1, SWTP-2, and PWTP were 0.3 ± 0.03, 0.4 ± 0.01, and 0.05 ± 0.02 items L-1 with the removal efficiencies of 98.8, 98.5, and 99.2 %, respectively. The considered size range of MP was 20 µm to <5000. Fragments and fibers were the two predominant MP shapes. In terms of polymer, the MPs were polypropylene (PP, 48 %), polyethylene (PE, 35 %), polyethylene terephthalate (PET, 11 %), and polystyrene (PS, 6 %). The field emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM-EDX) revealed the fractured and rough surfaces of the remaining MPs, which were also found to be contaminated with heavy metals, like lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), copper (Cu), and zinc (Zn). Hence, additional initiatives are required to remove the residual MPs from the treated waters to safeguard the city dwellers from potential hazards.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Bangladesh , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...