Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 16(14): 2981-94, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26287309

RESUMO

A variety of nanosilicas have been widely used to fabricate rough surfaces with superhydrophobic and superhydrophilic properties. In this context, we prepared mixed silica and mixed nanosilica that were generated by the growth and self-assembly of synthesized monodisperse silica nanospheres (11-30 nm, 363 m(2) g(-1) ) on the surface of Sylopol-948 and Dispercoll S3030 by using a base-catalyzed sol-gel route. Using this process, the interactions and hierarchical structure between the nano- and microsized synthesized silica particles were studied by changing the amount of tetraethoxysilane. The resulting materials were characterized by BET analysis, small-angle X-ray scattering (SAXS), dynamic light scattering, FTIR spectroscopy, and SEM. The mixed silica presented a higher specific surface area (326 m(2) g(-1) ), a six-fold higher percentage of (SiO)6 (44-68 %), and a higher amount of silanol groups (14.0-30.7 %) than Sylopol-948 (271 m(2) g(-1), 42.6 %, and 12.5 %, respectively). The morphological and hierarchical structural differences in the silica nanoparticles synthesized on the surface of commercial silica (micrometric or nanometric) were identified by SAXS. Mixed micrometric silica exhibited a higher degree of structural organization between particles than mixed nanosilica.

2.
Appl Spectrosc ; 67(4): 441-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23601544

RESUMO

Solid acid-base sensor materials were prepared by encapsulating three pH indicators (alizarin red, brilliant yellow, and acridine) within a silica matrix using a sol-gel approach through three different routes: (1) non-hydrolytic, (2) acid-catalyzed, and (3) base-catalyzed. Raman and Fourier transform infrared spectroscopies were used to evaluate the silica-indicator interactions. Because vibrational bands assigned to functional groups present in the indicator molecules were not detected, the main silica stretching mode νSi-O between approximately 1300 and 1000 cm(-1) was used to detect the presence of our indicators within the silica matrix. The large band centered at 1100 cm(-1) was deconvoluted into four components corresponding to the longitudinal optic and transversal optic modes of the silicon monoxide (SiO)4 and (SiO)6 siloxane rings. Using the component area of each mode, it was possible to calculate the percentage of each structure. Such percentages ranged from 49% to 70% (SiO)6 for the analyzed samples, within a confidence level of 95% (p = 0.05). (The confidence limits were 53-62%.) These results could be related to the pH indicator content, indicating that the quantity of the encapsulated molecule affects the (SiO)6 percentage values. In addition, a comparison with the radius of gyration obtained by small angle X-ray scattering was done. These results indicate that the analyte accesses the receptor elements through the passages between the siloxane rings but not through the siloxane rings themselves.


Assuntos
Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Acridinas/química , Antraquinonas/química , Compostos Azo/química , Benzenossulfonatos/química , Técnicas de Química Analítica/instrumentação , Concentração de Íons de Hidrogênio , Teste de Materiais , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...