Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 197: 106530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750673

RESUMO

Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.


Assuntos
Cerebelo , Ataxias Espinocerebelares , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/genética , Camundongos , Ataxina-1/metabolismo , Ataxina-1/genética , Células de Purkinje/patologia , Células de Purkinje/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Masculino
2.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108212

RESUMO

The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.


Assuntos
Encefalopatias , Matriz Extracelular , Humanos , Matriz Extracelular/metabolismo , Encéfalo/metabolismo , Encefalopatias/genética , Encefalopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...