Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(22): 15550-15563, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37950696

RESUMO

The organelle-specific localization of mononuclear and trinuclear iridium(III) complexes and their photodynamic behavior within the cells are described herein, emphasizing their structure-activity relationship. Both the IrA2 and IrB2 complexes possess a pair of phenyl-benzothiazole derived from the -CHO moieties of mononuclear organometallic iridium(III) complexes IrA1 and IrB1, which chelates IrCp*Cl (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) to afford trinuclear complexes IrA3 and IrB3. Insights into the photophysical and electrochemical parameters of the complexes were obtained by a time-dependent density functional theory study. The synthesized complexes IrA2, IrA3, IrB2, and IrB3 were found to be nontoxic to human MCF7 breast carcinoma cells. However, the photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death. Furthermore, to check the organelle-specific localization of IrA2 and IrB2, we observed that both complexes could selectively localize in the endoplasmic reticulum. In contrast, trinuclear IrA3 and IrB3 accumulate in the nuclei. The photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Organometálicos , Humanos , Compostos Organometálicos/química , Espécies Reativas de Oxigênio , Irídio/farmacologia , Irídio/química , Medicina de Precisão , Retículo Endoplasmático/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815438

RESUMO

Cell migration is vital for multiple physiological functions and is involved in the metastatic dissemination of tumour cells in various cancers. For effective directional migration, cells often reorient their Golgi apparatus and, therefore, the secretory traffic towards the leading edge. However, not much is understood about the regulation of Golgi's reorientation. Herein, we address the role of gap junction protein Connexin 43 (Cx43), which connects cells, allowing the direct exchange of molecules. We utilized HeLa WT cells lacking Cx43 and HeLa 43 cells, stably expressing Cx43, and found that functional Cx43 channels affected Golgi morphology and reduced the reorientation of Golgi during cell migration. Although the migration velocity of the front was reduced in HeLa 43, the front displayed enhanced coherence in movement, implying an augmented collective nature of migration. On BFA treatment, Golgi was dispersed and the high heterogeneity in inter-regional front velocity of HeLa WT cells was reduced to resemble the HeLa 43. HeLa 43 had higher vimentin expression and stronger basal F-actin. Furthermore, non-invasive measurement of basal membrane height fluctuations revealed a lower membrane tension. We, therefore, propose that reorientation of Golgi is not the major determinant of migration in the presence of Cx43, which induces collective-like coherent migration in cells.


Assuntos
Conexina 43 , Junções Comunicantes , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Movimento Celular , Células HeLa , Complexo de Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...