Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(46): 8252-8257, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37955414

RESUMO

Disclosed here is NHC-catalyzed direct intermolecular trapping of the ketone oxygen atom with the acyl azolium intermediate. The overall reaction is a dynamic kinetic resolution process that converts ketone to the corresponding enol ester with well-controlled axial chirality. Our reaction eventually affords non-C2-symmetric binaphthyl derivatives with important applications, such as in the area of asymmetric catalysis.

2.
Adv Sci (Weinh) ; 10(36): e2305768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907424

RESUMO

A method of desymmetrization of geminal difluoroalkanes using frustrated Lewis pair (FLP) mediated monoselective C-F activation where a chiral sulfide is the Lewis base component is reported. The stereoselective reaction provides generally high yields of diastereomeric sulfonium salts with dr of up to 95:5. The distribution of diastereomers is found to be thermodynamically controlled via facile sulfide exchange. The use of enantiopure chiral sulfides allows for high stereospecificity in nucleophilic substitution reactions and the formation of stereoenriched products.

3.
Nat Commun ; 13(1): 2846, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606378

RESUMO

The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines.


Assuntos
Ácidos Carboxílicos , Cetonas , Catálise , Imidazóis , Metano/análogos & derivados
4.
Nat Commun ; 13(1): 84, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013298

RESUMO

Axially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to > 99:1 e.r., > 20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.

5.
Angew Chem Int Ed Engl ; 60(51): 26616-26621, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34599547

RESUMO

Disclosed herein is the first carbene-organocatalyzed asymmetric addition of phosphine nucleophiles to the in situ generated α,ß-unsaturated acyl azolium intermediates. Our reaction enantioselectively constructs carbon-phosphine bonds and prepares chiral phosphines with high optical purities. The phosphine products are suitable for transforming to chiral ligands or catalysts with applications in asymmetric catalysis. The diarylalkyl or trialkyl phosphine products from our catalytic reactions, air-sensitive and reactive in nature, can be trapped (and stored) in their sulfur-oxidized form for operational simplicities.

6.
Chem Sci ; 12(25): 8778-8783, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257877

RESUMO

4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,ß-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules.

7.
Angew Chem Int Ed Engl ; 60(14): 7906-7912, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33469976

RESUMO

A new mode of carbene-catalyzed heteroatom activation and asymmetric reactions is disclosed. The reaction starts with addition of a carbene catalyst to a (benz)imidazole-derived aldimine substrate. Subsequent oxidation and proton transfer lead to the formation of a catalyst-bound triaza-diene as the key intermediate, in which the nitrogen atom at a site remote to the catalyst-substrate bond is activated. This unusual triaza-diene intermediate then undergoes highly enantioselective reactions with activated ketones through a concerted asynchronous pathway, as supported by mechanistic studies and preliminary density function theory calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...