Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 17(6): 1018-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26034782

RESUMO

Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of pricing due to greater susceptibility to climate vagaries. The livelihood and poverty results highlight the importance of the holistic consideration of the human-nature system and the careful selection of poverty indicators. Although the simulation model at this stage contains the minimum elements required to simulate the complexity of farmer livelihood interactions in coastal Bangladesh, the crop and socio-economic findings compare well with expected behaviours. The presented integrated model is the first step to develop a holistic, transferable analytic method and tool for coastal Bangladesh.


Assuntos
Agricultura , Mudança Climática , Bangladesh , Clima , Meio Ambiente , Monitoramento Ambiental , Humanos , Modelos Teóricos , Temperatura
2.
Environ Sci Process Impacts ; 17(6): 1118-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25865338

RESUMO

The FAO AquaCrop model has been widely applied throughout the world to simulate crop responses to deficit water applications. However, its application to saline conditions is not yet reported, though saline soils are common in coastal areas. In this study, we parameterized and tested AquaCrop to simulate rice yield under different salinity regimes. The data and information required in the model were collected through a field experiment at the Bangladesh Agricultural Research Institute, Gazipur. The experiment was conducted with the BRRI Dhan28, a popular boro rice variety in Bangladesh, with five levels of saline water irrigation, three replicates for each level. In addition, field monitoring was carried out at Satkhira in the southwest coastal region of Bangladesh to collect data and information based on farmers' practices and to further validate the model. The results indicated that the AquaCrop model with most of its default parameters could replicate the variation of rice yield with the variation of salinity reasonably well. The root mean square error and mean absolute error of the model yield were only 0.12 t per ha and 0.03 t per ha, respectively. The crop response versus soil salinity stress curve was found to be convex in shape with a lower threshold of 2 dS m(-1), an upper threshold of 10 dS m(-1) and a shape factor of 2.4. As the crop production system in the coastal belt of Bangladesh has become vulnerable to climate induced sea-level rise and the consequent increase in water and soil salinity, the AquaCrop would be a useful tool in assessing the potential impact of these future changes as well as other climatic parameters on rice yield in the coastal region.


Assuntos
Oryza/fisiologia , Salinidade , Estresse Fisiológico , Irrigação Agrícola , Clima , Mudança Climática , Modelos Teóricos , Plantas Tolerantes a Sal , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...