Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 179, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498215

RESUMO

Sediments underlying marine hypoxic zones are huge sinks of unreacted complex organic matter, where despite acute O2 limitation, obligately aerobic bacteria thrive, and steady depletion of organic carbon takes place within a few meters below the seafloor. However, little knowledge exists about the sustenance and complex carbon degradation potentials of aerobic chemoorganotrophs in these sulfidic ecosystems. We isolated and characterized a number of aerobic bacterial chemoorganoheterotrophs from across a ~ 3 m sediment horizon underlying the perennial hypoxic zone of the eastern Arabian Sea. High levels of sequence correspondence between the isolates' genomes and the habitat's metagenomes and metatranscriptomes illustrated that the strains were widespread and active across the sediment cores explored. The isolates catabolized several complex organic compounds of marine and terrestrial origins in the presence of high or low, but not zero, O2. Some of them could also grow anaerobically on yeast extract or acetate by reducing nitrate and/or nitrite. Fermentation did not support growth, but enabled all the strains to maintain a fraction of their cell populations over prolonged anoxia. Under extreme oligotrophy, limited growth followed by protracted stationary phase was observed for all the isolates at low cell density, amid high or low, but not zero, O2 concentration. While population control and maintenance could be particularly useful for the strains' survival in the critically carbon-depleted layers below the explored sediment depths (core-bottom organic carbon: 0.5-1.0% w/w), metagenomic data suggested that in situ anoxia could be surmounted via potential supplies of cryptic O2 from previously reported sources such as Nitrosopumilus species.


Assuntos
Ecossistema , Oxigênio , Humanos , Oxigênio/metabolismo , Sedimentos Geológicos/microbiologia , Carbono/metabolismo , Bactérias , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...