Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(15): 10560-10568, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32613830

RESUMO

Neutrophils are important cells of the innate immune system and the major leukocyte subpopulation in blood. They are responsible for recognizing and neutralizing invading pathogens, such as bacteria or fungi. For this, neutrophils are well equipped with pathogen recognizing receptors, cytokines, effector molecules, and granules filled with reactive oxygen species (ROS)-producing enzymes. Depending on the pathogen type, different reactions are triggered, which result in specific activation states of the neutrophils. Here, we aim to establish a label-free method to indirectly detect infections and to identify the cause of infection by spectroscopic characterization of the neutrophils. For this, isolated neutrophils from human peripheral blood were stimulated in an in vitro infection model with heat-inactivated Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial pathogens as well as with heat-inactivated and viable fungi (Candida albicans). Label-free and nondestructive Raman spectroscopy was used to characterize neutrophils on a single cell level. Phagocytized fungi could be visualized in a few high-resolution false color images of individual neutrophils using label-free Raman spectroscopic imaging. Using a high-throughput screening Raman spectroscope (HTS-RS), Raman spectra of more than 2000 individual neutrophils from three different donors were collected in each treatment group, yielding a data set of almost 20 000 neutrophil spectra. Random forest classification models were trained to differentiate infected and noninfected cells with high accuracy (90%). Among the neutrophils challenged with pathogens, even the cause of infection, bacterial or fungal, was predicted correctly with 92% accuracy. Therefore, Raman spectroscopy enables reliable neutrophil phenotyping and infection diagnosis in a label-free manner. In contrast to the microbiological diagnostic standard, where the pathogen is isolated in time-consuming cultivation, this Raman-based method could potentially be blood-culture independent, thus saving precious time in bloodstream infection diagnostics.


Assuntos
Candida albicans/isolamento & purificação , Escherichia coli/isolamento & purificação , Neutrófilos/microbiologia , Análise Espectral Raman/métodos , Staphylococcus aureus/isolamento & purificação , Animais , Humanos
2.
J Biophotonics ; 13(2): e201960025, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617683

RESUMO

Existing approaches for early-stage bladder tumor diagnosis largely depend on invasive and time-consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real-time tumor diagnosis can enable immediate laser-based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real-time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe-based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low- and high-grade tumor.


Assuntos
Análise Espectral Raman , Neoplasias da Bexiga Urinária , Humanos , Análise Multivariada , Gradação de Tumores , Neoplasias da Bexiga Urinária/diagnóstico
3.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614861

RESUMO

Pollen studies play a critical role in various fields of science. In the last couple of decades, replacement of manual identification of pollen by image-based methods using pollen morphological features was a great leap forward, but challenges for pollen with similar morphology remain, and additional approaches are required. Spectroscopy approaches for identification of pollen, such as Raman spectroscopy has potential benefits over traditional methods, due to the investigation of the intrinsic molecular composition of a sample. However, current Raman-based characterization of pollen is complex and time-consuming, resulting in low throughput and limiting the statistical significance of the acquired data. Previously demonstrated high-throughput screening Raman spectroscopy (HTS-RS) eliminates the complexity as well as human interaction by incorporation full automation of the data acquisition process. Here, we present a customization of HTS-RS for pollen identification, enabling sampling of a large number of pollen in comparison to other state-of-the-art Raman pollen investigations. We show that using Raman spectra we are able to provide a preliminary estimation of pollen types based on growth habits using hierarchical cluster analysis (HCA) as well as good taxonomy of 37 different Pollen using principal component analysis-support vector machine (PCA-SVM) with good accuracy even for the pollen specimens sharing similar morphological features. Our results suggest that HTS-RS platform meets the demands for automated pollen detection making it an alternative method for research concerning pollen.

4.
Analyst ; 144(20): 6098-6107, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31531499

RESUMO

Raman spectroscopy can provide the biomolecular fingerprint of a cell in a label-free manner. Although a variety of clinical and biomedical applications have been demonstrated, the method remains largely a niche technology. The two main problems are the complexity of data acquisition and the complexity of data analysis. Generally, Raman measurements are performed manually and require a substantial amount of time. This, on the other hand, frequently results in a low number of samples and hence with questionable statistical evaluation. Here, we propose an automated high content screening Raman spectroscopy (HCS-RS) platform, which can perform a series of experiments without human interaction, significantly increasing the number of measured samples and making the measurement more reliable. The automated image processing of bright field images in combination with automatic spectral acquisition of the molecular fingerprint of cells exposed to different physiological conditions enables label-free high content screening applications. The performance of the developed HCS-RS platform is demonstrated by investigating the effect of panitumumab on SW48 and SW480 colorectal cancer cells with wild-type and mutated K-RAS, respectively, in a series of concentrations. Our result indicates that the increased content of panitumumab prohibits the activation of the MAP kinase of the colorectal cancer cells with wild-type K-RAS strongly, whereas there is no significant effect on the K-RAS mutated cells. Moreover, the relative amount of the panitumumab content present in the cells is determined from the Raman spectral information, which could be beneficial for personalized patient treatment.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Panitumumabe/farmacologia , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico , Humanos , Panitumumabe/metabolismo
5.
J Biophotonics ; 12(7): e201800447, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30848073

RESUMO

Raman spectroscopy using fiber optic probe combines non-contacted and label-free molecular fingerprinting with high mechanical flexibility for biomedical, clinical and industrial applications. Inherently, fiber optic Raman probes provide information from a single point only, and the acquisition of images is not straightforward. For many applications, it is highly crucial to determine the molecular distribution and provide imaging information of the sample. Here, we propose an approach for Raman imaging using a handheld fiber optic probe, which is built around computer vision-based assessment of positional information and simultaneous acquisition of spectroscopic information. By combining this implementation with real-time data processing and analysis, it is possible to create not only fiber-based Raman imaging but also an augmented chemical reality image of the molecular distribution of the sample surface in real-time. We experimentally demonstrated that using our approach, it is possible to determine and to distinguish borders of different bimolecular compounds in a short time. Because the method can be transferred to other optical probes and other spectroscopic techniques, it is expected that the implementation will have a large impact for clinical, biomedical and industrial applications.


Assuntos
Realidade Aumentada , Fibras Ópticas , Análise Espectral Raman/instrumentação , Análise de Dados , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Imagem Molecular
6.
Anal Chem ; 90(3): 2023-2030, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286634

RESUMO

We present a high-throughput screening Raman spectroscopy (HTS-RS) platform for a rapid and label-free macromolecular fingerprinting of tens of thousands eukaryotic cells. The newly proposed label-free HTS-RS platform combines automated imaging microscopy with Raman spectroscopy to enable a rapid label-free screening of cells and can be applied to a large number of biomedical and clinical applications. The potential of the new approach is illustrated by two applications. (1) HTS-RS-based differential white blood cell count. A classification model was trained using Raman spectra of 52 218 lymphocytes, 48 220 neutrophils, and 7 294 monocytes from four volunteers. The model was applied to determine a WBC differential for two volunteers and three patients, producing comparable results between HTS-RS and machine counting. (2) HTS-RS-based identification of circulating tumor cells (CTCs) in 1:1, 1:9, and 1:99 mixtures of Panc1 cells and leukocytes yielded ratios of 55:45, 10:90, and 3:97, respectively. Because the newly developed HTS-RS platform can be transferred to many existing Raman devices in all laboratories, the proposed implementation will lead to a significant expansion of Raman spectroscopy as a standard tool in biomedical cell research and clinical diagnostics.


Assuntos
Bioquímica/métodos , Células Sanguíneas/citologia , Ensaios de Triagem em Larga Escala/métodos , Contagem de Leucócitos/métodos , Células Neoplásicas Circulantes , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...