Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 51(10): 5503-5, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22564061

RESUMO

In the present work, we report a family of Ni(14) and unprecedented Ni(13) clusters linked by end-on azido and oximato bridges. Ferrimagnetic response gives S = 6 and 9 ground states, resulting in the largest nuclearities and spins in nickel oximato chemistry.

2.
Inorg Chem ; 45(20): 8144-55, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16999412

RESUMO

Six new copper(II) complexes of formula [Cu(mu-cbdca)(H2O)]n (1) (cbdca = cyclobutanedicarboxylate), [Cu2(mu-cbdca)2(mu-bipy)2]n (2) (bipy = 4,4'-bipyridine), [Cu(mu-cbdca)(mu-bpe)]n (3) (bpe = 1,2-bis(4-pyridyl)ethane), [Cu(mu-cbdca)(bpy)]2 (4) (bpy = 2,2'-bipyridine), [Cu(terpy)(ClO4)]2(mu-cbdca).H2O (5) (terpy = 2,2':6',2' '-terpyridine), and [Cu(cbdca)(phen) (H2O)].2H2O (6) (phen = 1,10-phenanthroline) were obtained and structurally characterized by X-ray crystallography. Complex 1 is a two-dimensional network with a carboxylate bridging ligand in syn-anti (equatorial-equatorial) coordination mode. Complexes 2 and 3 are formed by chains through syn-anti (equatorial-apical) carboxylate bridges, linked to one another by the corresponding amine giving two-dimensional nets. Complexes 4 and 5 are dinuclear, with the copper ions linked by two oxo (from two different carboxylate) bridging ligands in 4 and with only one carboxylate showing the unusual bis-unidentate mode in complex 5. Complex 6 is mononuclear, with the carboxylate linked to copper(II) in a chelated form. Intermolecular hydrogen bonds and pi-pi stacking interactions build an extended two-dimensional network. Magnetic susceptibility measurements of complexes 1-5 in the temperature range 2-300 K show the occurrence of weak ferromagnetic coupling for 1 and 4 (J = 4.76 and 4.44 cm(-1), respectively) and very weak antiferromagnetic coupling for 2, 3, and 5 (J = -0.94, -0.67, and -1.61 cm(-1), respectively). Structural features and magnetic values are compared with those reported for the similar copper(II) malonate and phenylmalonate complexes.

3.
Chem Commun (Camb) ; (2): 233-5, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15724196

RESUMO

Reaction of di-2-pyridyl ketone (dpk) with nickel acetate and azide in the presence of potassium tert-butylate as a catalytic base generates the title compound, which contains the largest [Ni(mu(1,1)-N3)]6 circles in the discrete ferromagnetically-coupled M(II)-azide cluster family, and shows an unprecedented in situ cyanomethylation of ketone.

4.
Inorg Chem ; 42(3): 709-16, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-12562184

RESUMO

Two polymeric malonato-bridged manganese(II) complexes of formula [Mn(mal)(H(2)O)(2)](n)() (1) and [Mn(2)(mal)(2)(4,4'-bipy)(H(2)O)(2)](n)() (2) have been synthesized and characterized (mal = malonate dianion; 4,4'-bipy = 4,4'-bipyridine). The crystal structure of complex 1 was already known. Complex 2 crystallizes in monoclinic space group P2(1)/n, Z = 2, with unit cell parameters of a = 7.2974(10) A, b = 18.7715(10) A, c = 7.514(3) A, and beta = 91.743(12) degrees. The structure determination reveals that the complex [Mn(2)(mal)(2)(4,4'-bipy)(H(2)O)(2)](n)() (2) is a 3D network being composed of Mn-malonate sheets which are pillared by bidentate 4,4'-bipy spacer forming small voids. The Mn-Mn distances through Mn-mu-(O3-C8-O4)-Mn, Mn-mu(O1-C6-O2)-Mn, and Mn-mu-4,4'-bipy-Mn bridges are 5.561, 5.410, and 11.723 A, respectively. The magnetic behaviors of complexes 1 and 2 in the temperature range 300-2 K are very close, corresponding to a weak antiferromagnetic coupling. The magnetic pathways of complex 1 are through two Mn-O-C-O-Mn with anti-anti conformation and two Mn-O-C-O-Mn with syn-anti conformations and in complex 2 through all Mn-O-C-O-Mn with syn-anti conformations. Both syn-anti and anti-anti conformations create weak antiferromagnetic coupling, and the susceptibility data are fitted by the expansion series of Lines and the Curély formula for an S = 5/2 antiferromagnetic quadratic layer, based on the exchange Hamiltonian H = -Sigma(nn)()JS(i)()S(j)(). The best fit is given by the superexchange parameters J = -0.32 cm(-)(1) and g = 2.00 for complex 1 and J = -0.14 cm(-)(1), J(inter) = -0.031 cm(-)(1), and g = 2.00 for complex 2. Finally, in both the complexes there is a magnetic pathway Mn-O-C-C-C-O-Mn, and this pathway through the three carbon atoms of the malonato-bridging ligand could be considered negligible.

5.
Inorg Chem ; 35(4): 864-868, 1996 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11666258

RESUMO

Two new nickel(II) end-to-end azido-bridged compounds, cis-catena-[NiL(2)(&mgr;-N(3))](n)()(ClO(4))(n)().nH(2)O (1) and [Ni(2)L(4)(&mgr;-N(3))(2)](PF(6))(2) (2), were synthesized and characterized; L is 2-(aminoethyl)pyridine. The crystal structures of 1 and 2 were solved. Complex 1: monoclinic system, space group P2(1)/a, a = 8.637(2) Å, b = 18.9995(7) Å, c = 12.3093(7) Å, beta = 105.92(2) degrees, Z = 4. Complex 2: triclinic system, space group P&onemacr;, a = 9.139(7) Å, b = 10.124(3) Å, c = 12.024(2) Å, alpha = 70.407(14) degrees, beta = 84.19(2) degrees, gamma = 67.67(4) degrees, Z = 1. In the two complexes the nickel atom is situated in a similarly distorted octahedral environment. The two complexes are different; 1 is a one-dimensional helicoidal complex with the two L ligands and the two end-to-end azido bridges in a cis arrangement while complex 2 is a dinuclear system with two end-to-end azido bridges, indicating the extreme importance of the counteranion present (ClO(4)(-) for 1 and PF(6)(-) for 2). The magnetic properties of the two compounds were studied by susceptibility measurements vs temperature. The chi(M) vs T plot for 1 shows the shape for a weakly antiferromagnetically coupled nickel(II) one-dimensional complex without a maximum until 4 K. In contrast, for complex 2 the shape of the chi(M) vs T curve shows a maximum near 40 K, indicating medium antiferromagnetic coupling. From the spin Hamiltonian -J(ij)()S(i)()S(j)(), J values for 1 and 2 were less than -1 and -29.1 cm(-)(1), respectively. The magnetic behavior for 1 and 2 may be explained in terms of the overlap between magnetic orbitals, taking into account the torsion of the Ni(II) atoms and azido-bridging ligands in the two structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...