Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(18): 5896-5916, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527560

RESUMO

European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.


Assuntos
Solanum lycopersicum , Mapeamento Cromossômico , Solanum lycopersicum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373247

RESUMO

A collection of 30 melon introgression lines (ILs) was developed from the wild accession Ames 24297 (TRI) into 'Piel de Sapo' (PS) genetic background. Each IL carried an average of 1.4 introgressions from TRI, and the introgressions represented 91.4% of the TRI genome. Twenty-two ILs, representing 75% of the TRI genome, were evaluated in greenhouse (Algarrobo and Meliana) and field (Alcàsser) trials, mainly to study traits related to domestication syndrome such as fruit weight (FW) and flesh content (FFP), as well as other fruit quality traits as fruit shape (FS), flesh firmness (FF), soluble solid concentration (SSC), rind color and abscission layer. The IL collection showed an impressive variation in size-related traits, with FW ranging from 800 to 4100 g, reflecting the strong effect of the wild genome on these traits. Most of the ILs produced smaller fruits compared with PS; however, unexpectedly, the IL TRI05-2 produced bigger fruits, likely due to new epistatic interacions with the PS genetic background. In contrast, the genotypic effect for FS was smaller, and few QTLs with notable effects were detected. Interestingly, variability was also observed for FFP, FF and SSC, rind color and abscission layer formation. Genes in these introgressions are candidates for having been involved in melon domestication and diversification as well. These results confirm that the TRI IL collection is a very powerful tool for mapping traits of agronomic interest in melon, allowing the confirmation of previously reported QTLs and the identification of new ones to better understand the domestication process of this crop.


Assuntos
Citrullus , Cucurbitaceae , Cucurbitaceae/genética , Domesticação , Melhoramento Vegetal , Locos de Características Quantitativas , Biblioteca Gênica , Fenótipo , Frutas/genética , Citrullus/genética
3.
Hortic Res ; 9: uhac112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795386

RESUMO

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

4.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448797

RESUMO

In the present work, we study the genetic control of reproductive traits under different heat stress conditions in two populations of inbred lines derived from crosses between two S. pimpinellifolium accessions and two tomato cultivars (E9×L5 and E6203×LA1589). The temperature increase affected the reproductive traits, especially at extremely high temperatures, where only a few lines were able to set fruits. Even though a relative modest number of QTLs was identified, two clusters of QTLs involved in the responses of reproductive traits to heat stress were detected in both populations on chromosomes 1 and 2. Interestingly, several epistatic interactions were detected in the E9×L5 population, which were classified into three classes based on the allelic interaction: dominant (one locus suppressed the allelic effects of a second locus), co-adaptive (the double-homozygous alleles from the same parent alleles showed a higher phenotypic value than the combination of homozygous alleles from alternative parents) and transgressive (the combination of double-homozygous alleles from different parents showed better performance than double-homozygous alleles from the same parents). These results reinforce the important role of non-additive genetic variance in the response to heat stress and the potential of the new allelic combinations that arise after wide crosses.

5.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35358313

RESUMO

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Assuntos
Solanum lycopersicum , Alelos , Fazendeiros , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Solanum lycopersicum/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
BMC Plant Biol ; 21(1): 345, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294034

RESUMO

BACKGROUND: Due to global warming, the search for new sources for heat tolerance and the identification of genes involved in this process has become an important challenge as of today. The main objective of the current research was to verify whether the heat tolerance determined in controlled greenhouse experiments could be a good predictor of the agronomic performance in field cultivation under climatic high temperature stress. RESULTS: Tomato accessions were grown in greenhouse under three temperature regimes: control (T1), moderate (T2) and extreme heat stress (T3). Reproductive traits (flower and fruit number and fruit set) were used to define heat tolerance. In a first screening, heat tolerance was evaluated in 219 tomato accessions. A total of 51 accessions were identified as being potentially heat tolerant. Among those, 28 accessions, together with 10 accessions from Italy (7) and Bulgaria (3), selected for their heat tolerance in the field in parallel experiments, were re-evaluated at three temperature treatments. Sixteen tomato accessions showed a significant heat tolerance at T3, including five wild species, two traditional cultivars and four commercial varieties, one accession from Bulgaria and four from Italy. The 15 most promising accessions for heat tolerance were assayed in field trials in Italy and Bulgaria, confirming the good performance of most of them at high temperatures. Finally, a differential gene expression analysis in pre-anthesis (ovary) and post-anthesis (developing fruit) under heat stress among pairs of contrasting genotypes (tolerant and sensitive from traditional and modern groups) showed that the major differential responses were produced in post-anthesis fruit. The response of the sensitive genotypes included the induction of HSP genes, whereas the tolerant genotype response included the induction of genes involved in the regulation of hormones or enzymes such as abscisic acid and transferases. CONCLUSIONS: The high temperature tolerance of fifteen tomato accessions observed in controlled greenhouse experiments were confirmed in agronomic field experiments providing new sources of heat tolerance that could be incorporated into breeding programs. A DEG analysis showed the complex response of tomato to heat and deciphered the different mechanisms activated in sensitive and tolerant tomato accessions under heat stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Temperatura Alta , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Termotolerância/genética , Bulgária , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Itália , Fenótipo , Melhoramento Vegetal , Espanha
7.
Front Plant Sci ; 11: 326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391023

RESUMO

Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession TO-937. Mapping populations were cultivated under increased temperature regimen conditions: T1 (25°C day/21°C night), T2 (30°C day/25°C night) and T3 (35°C day/30°C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change.

8.
Theor Appl Genet ; 130(9): 1837-1856, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28584902

RESUMO

KEY MESSAGE: Loci on LGIV, VI, and VIII of melon genome are involved in the control of fruit domestication-related traits and they are candidate to have played a role in the domestication of the crop. The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F2 population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with "Trigonus" allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis.


Assuntos
Cucumis melo/genética , Domesticação , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Frutas/genética , Ligação Genética , Fenótipo
9.
Theor Appl Genet ; 126(6): 1531-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23443139

RESUMO

The coexistence of both climacteric and non-climacteric genotypes and the availability of a set of genetic and genomic resources make melon a suitable model for genetic studies of fruit ripening. We have previously described a QTL, ETHQB3.5, which induces climacteric fruit ripening in the near-isogenic line (NIL) SC3-5 that harbors an introgression on linkage group (LG) III from the non-climacteric melon accession PI 161375 in the, also non-climacteric cultivar, "Piel de Sapo" genetic background. In the current study, a new major QTL, ETHQV6.3, on LG VI was detected on an additional introgression in the same NIL. These QTLs are capable, individually, of inducing climacteric ripening in the non-climacteric background, the effects of ETHQV6.3 being greater than that of ETHQB3.5. The QTLs interact epistatically, advancing the timing of ethylene biosynthesis during ripening and, therefore, the climacteric responses. ETHQV6.3 was fine-mapped to a 4.5 Mb physical region of the melon genome, probably in the centromeric region of LG VI. The results presented will be of value in the molecular identification of the gene underlying ETHQV6.3.


Assuntos
Cruzamento/métodos , Cucumis melo/genética , Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Análise de Variância , Mapeamento Cromossômico , Cruzamentos Genéticos , Cucumis melo/química , Frutas/metabolismo , Genótipo
10.
PLoS One ; 7(6): e38992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761719

RESUMO

Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes.


Assuntos
Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Odorantes/análise , Prunus/química , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
11.
Theor Appl Genet ; 118(1): 139-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18806992

RESUMO

We report the development of 158 primer pairs flanking SSR motifs in genomic (gSSR) and EST (EST-SSR) melon sequences, all yielding polymorphic bands in melon germplasm, except one that was polymorphic only in Cucurbita species. A similar polymorphism level was found among EST-SSRs and gSSRs, between dimeric and trimeric EST-SSRs, and between EST-SSRs placed in the open reading frame or any of the 5'- or 3'-untranslated regions. Correlation between SSR length and polymorphism was only found for dinucleotide EST-SSRs located within the untranslated regions, but not for trinucleotide EST-SSRs. Transferability of EST-SSRs to Cucurbita species was assayed and 12.7% of the primer pairs amplified at least in one species, although only 5.4% were polymorphic. A set of 14 double haploid lines from the cross between the cultivar "Piel de Sapo" and the accession PI161375 were selected for the bin mapping approach in melon. One hundred and twenty-one SSR markers were newly mapped. The position of 46 SSR loci was also verified by genotyping the complete population. A final bin-map was constructed including 80 RFLPs, 212 SSRs, 3 SNPs and the Nsv locus, distributed in 122 bins with an average bin length of 10.2 cM and a maximum bin length of 33 cM. Map density was 4.2 cM/marker or 5.9 cM/SSR.


Assuntos
Mapeamento Cromossômico , Cucumis melo/genética , Etiquetas de Sequências Expressas , Repetições Minissatélites , Polimorfismo Genético , Primers do DNA , DNA de Plantas/genética , Genoma de Planta , Genótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...