Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Pharmacol Sci ; 2016: 4621039, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051418

RESUMO

We investigate the pharmacokinetics of two different cephalexin formulations administered to llamas by the intravenous (IV), intramuscular (IM), and subcutaneous (SC) routes, the minimum inhibitory concentration (MIC) of cephalexin against some Escherichia coli and staphylococci isolated from llamas, and we apply the PK/PD modelling approach, so that effective dosage recommendations for this species could be made. Six llamas received immediate (10 mg/kg, IV, IM, and SC) and sustained (8 mg/kg IM, SC) release cephalexin. Pharmacokinetic parameters were calculated by noncompartmental approach. Immediate release SC administration produced a significantly longer elimination half-life as compared with the IV and IM administration (1.3 ± 0.2 versus 0.6 ± 0.1 and 0.6 ± 0.1 h, resp.) and higher mean absorption time as compared with the IM administration (1.7 ± 0.5 versus 0.6 ± 0.4 h). Absolute bioavailability was in the range of 72-89% for both formulations and routes of administration. Cephalexin MIC90 values against staphylococci and E. coli were 1.0 and 8.0 µg/mL, respectively. Our results show that the immediate release formulation (10 mg/kg) would be effective for treating staphylococcal infections administered every 8 h (IM) or 12 h (SC), whereas the sustained release formulation (8 mg/kg) would require the IM or SC administration every 12 or 24 h, respectively.

2.
Vet Med Int ; 2014: 789353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431741

RESUMO

This study was conducted in order to characterize the pharmacokinetics of orally administered cephalexin to healthy adult and aged dogs, using a population pharmacokinetic approach. Two hundred and eighty-six cephalexin plasma concentrations obtained from previous pharmacokinetic studies were used. Sex, age, pharmaceutical formulation, and breed were evaluated as covariates. A one-compartment model with an absorption lag-time (Tlag) best described the data. The final model included age (adult; aged) on apparent volume of distribution (Vd/F), apparent elimination rate (ke/F), and Tlag; sex (female; male) on ke/F, and breed (Beagle; mixed-breed) on Vd/F. Addition of the covariates to the model explained 78% of the interindividal variability (IIV) in Vd/F, 36% in ke/F, and 24% in Tlag, respectively. Formulation did not affect the variability of any of the pharmacokinetic parameters. Tlag was longer, whereas Vd/F and ke/F were lower in aged compared to adult animals; in female aged dogs ke/F was lower than in male aged dogs; however, the differences were of low magnitude. Different disposition of cephalexin may be expected in aged dogs.

3.
Chronobiol Int ; 27(3): 549-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20524800

RESUMO

Ceftazidime, a third-generation cephalosporin, is widely used for the treatment of Pseudomonas aeruginosa infections. The aims of the present study were to characterize the pharmacokinetics of ceftazidime and to estimate the T > MIC against P. aeruginosa, after its intramuscular (i.m.) administration at two different dosing times (08:30 h and 20:30 h) to dogs, in order to determine whether time-of-day administration modifies ceftazidime pharmacokinetics and/or predicted clinical antipseudomonal efficacy. Six female healthy beagle dogs were administered ceftazidime pentahydrate by the intramuscular route in a single dose of 25 mg/kg at both 08:30 and 20:30 h, two weeks apart. Plasma ceftazidime concentrations were determined by microbiological assay. Pharmacokinetic parameters and time above the minimum inhibitory concentration (T > MIC) and 4xMIC for Pseudomonas aeruginosa were calculated from the disposition curve of each dog. No differences between the daytime and nighttime administrations were found for the main pharmacokinetic parameters, including C(max), t(max), t((1/2) lambda), AUC, and MRT; however, the high interindividual variability shown by these values and the small number of individuals may account for this lack of difference. Rate of absorption (k(a)) was significantly higher after the 20:30 h than 08:30 h administration. No significant differences between T > MIC were found when comparing the 08:30 h and 20:30 h administrations. Mean T > MIC values predicted a favorable bacteriostatic effect for all susceptible strains of P. aeruginosa for the 12 h dosing interval at both dosing times. Our results suggest that similar antipseudomonal activity may be expected when ceftazidime is administered at 8:30 and 20:30 h; however, as only two timepoints of drug administration were explored, we are unable to draw any conclusions for other treatment times during the 24 h.


Assuntos
Ceftazidima/farmacocinética , Animais , Área Sob a Curva , Ceftazidima/administração & dosagem , Ceftazidima/farmacologia , Cães , Feminino , Injeções Intramusculares , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...