Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 3: 788903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465294

RESUMO

Previously, we reported quantitatively smaller total corpus callosum (CC) and total forebrain size in critically ill term-born and premature patients following complex perioperative critical care for long-gap esophageal atresia (LGEA) that included Foker process repair. We extended our cross-sectional pilot study to determine sub-regional volumes of CC and forebrain using structural brain MRI. Our objective was to evaluate region-specific CC as an in-vivo marker for decreased myelination and/or cortical neural loss of homotopic-like sub-regions of the forebrain. Term-born (n = 13) and premature (n = 13) patients, and healthy naïve controls (n = 21) <1-year corrected age underwent non-sedated MRI using a 3T Siemens scanner, as per IRB approval at Boston Children's Hospital following completion of clinical treatment for Foker process. We used ITK-SNAP (v.3.6) to manually segment six sub-regions of CC and eight sub-regions of forebrain as per previously reported methodology. Group differences were assessed using a general linear model univariate analysis with corrected age at scan as a covariate. Our analysis implicates globally smaller CC and forebrain with sub-region II (viz. rostral body of CC known to connect to pre-motor cortex) to be least affected in comparison to other CC sub-regions in LGEA patients. Our report of smaller subgenual forebrain implicates (mal)adaptation in limbic circuits development in selected group of infant patients following LGEA repair. Future studies should include diffusion tractography studies of CC in further evaluation of what appears to represent global decrease in homotopic-like CC/forebrain size following complex perioperative critical care of infants born with LGEA.

2.
Ann Clin Transl Neurol ; 8(11): 2132-2145, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662511

RESUMO

OBJECTIVES: Previous studies have demonstrated that infants are typically born with a left-greater-than-right forebrain asymmetry that reverses throughout the first year of life. We hypothesized that critically ill term-born and premature patients following surgical and critical care for long-gap esophageal atresia (LGEA) would exhibit alteration in expected forebrain asymmetry. METHODS: Term-born (n = 13) and premature (n = 13) patients, and term-born controls (n = 23) <1 year corrected age underwent non-sedated research MRI following completion of LGEA treatment via Foker process. Structural T1- and T2-weighted images were collected, and ITK-SNAP was used for forebrain tissue segmentation and volume acquisition. Data were presented as absolute (cm3 ) and normalized (% total forebrain) volumes of the hemispheres. All measures were checked for normality, and group status was assessed using a general linear model with age at scan as a covariate. RESULTS: Absolute volumes of both forebrain hemispheres were smaller in term-born and premature patients in comparison to controls (p < 0.001). Normalized hemispheric volume group differences were detected by T1-weighted analysis, with premature patients demonstrating right-greater-than-left hemisphere volumes in comparison to term-born patients and controls (p < 0.01). While normalized group differences were very subtle (a right hemispheric predominance of roughly 2% of forebrain volume), they represent a deviation from the expected pattern of hemispheric brain asymmetry. INTERPRETATION: Our pilot quantitative MRI study of hemispheric volumes suggests that premature patients might be at risk of altered expected left-greater-than-right forebrain asymmetry following repair of LGEA. Future neurobehavioral studies in infants born with LGEA are needed to elucidate the functional significance of presented anatomical findings.


Assuntos
Atresia Esofágica/patologia , Atresia Esofágica/cirurgia , Prosencéfalo/anatomia & histologia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Prosencéfalo/diagnóstico por imagem
3.
Sci Rep ; 10(1): 6408, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286423

RESUMO

Previous studies in preterm infants report white matter abnormalities of the corpus callosum (CC) as an important predictor of neurodevelopmental outcomes. Our cross-sectional study aimed to describe qualitative and quantitative CC size in critically ill infants following surgical and critical care for long-gap esophageal atresia (LGEA) - in comparison to healthy infants - using MRI. Non-sedated brain MRI was acquired for full-term (n = 13) and premature (n = 13) patients following treatment for LGEA, and controls (n = 20) <1 year corrected age. A neuroradiologist performed qualitative evaluation of T1-weighted images. ITK-SNAP was used for linear, 2-D and 3-D manual CC measures and segmentations as part of CC size quantification. Qualitative MRI analysis indicated underdeveloped CC in both patient groups in comparison to controls. We show no group differences in mid-sagittal CC length. Although 2-D results were inconclusive, volumetric analysis showed smaller absolute (F(2,42) = 20.40, p < 0.001) and normalized (F(2,42) = 16.61, p < 0.001) CC volumes following complex perioperative treatment for LGEA in both full-term and premature patients, suggesting delayed or diminished CC growth in comparison to controls, with no difference between patient groups. Future research should look into etiology of described differences, neurodevelopmental outcomes, and role of the CC as an early marker of neurodevelopment in this unique infant population.


Assuntos
Corpo Caloso/diagnóstico por imagem , Corpo Caloso/cirurgia , Cuidados Críticos , Atresia Esofágica/diagnóstico por imagem , Atresia Esofágica/cirurgia , Imageamento por Ressonância Magnética , Peso Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Imageamento Tridimensional , Recém-Nascido , Masculino
4.
Brain Sci ; 9(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861169

RESUMO

We previously showed that infants born with long-gap esophageal atresia (LGEA) demonstrate clinically significant brain MRI findings following repair with the Foker process. The current pilot study sought to identify any pre-existing (PRE-Foker process) signs of brain injury and to characterize brain and corpus callosum (CC) growth. Preterm and full-term infants (n = 3/group) underwent non-sedated brain MRI twice: before (PRE-Foker scan) and after (POST-Foker scan) completion of perioperative care. A neuroradiologist reported on qualitative brain findings. The research team quantified intracranial space, brain, cerebrospinal fluid (CSF), and CC volumes. We report novel qualitative brain findings in preterm and full-term infants born with LGEA before undergoing Foker process. Patients had a unique hospital course, as assessed by secondary clinical end-point measures. Despite increased total body weight and absolute intracranial and brain volumes (cm3) between scans, normalized brain volume was decreased in 5/6 patients, implying delayed brain growth. This was accompanied by both an absolute and relative CSF volume increase. In addition to qualitative findings of CC abnormalities in 3/6 infants, normative CC size (% brain volume) was consistently smaller in all infants, suggesting delayed or abnormal CC maturation. A future larger study group is warranted to determine the impact on the neurodevelopmental outcomes of infants born with LGEA.

5.
Front Pediatr ; 7: 315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428593

RESUMO

Objective: To determine brain magnetic resonance imaging (MRI) measures of cerebrospinal fluid (CSF) and whole brain volume of full-term and premature infants following surgical treatment for thoracic non-cardiac congenital anomalies requiring critical care. Methods: Full-term (n = 13) and pre-term (n = 13) patients with long-gap esophageal atresia, and full-term naïve controls (n = 19) < 1 year corrected age, underwent non-sedated brain MRI following completion of thoracic non-cardiac surgery and critical care treatment. Qualitative MRI findings were reviewed and reported by a pediatric neuroradiologist and neurologist. Several linear brain metrics were measured using structural T1-weighted images, while T2-weighted images were required for segmentation of total CSF and whole brain tissue using the Morphologically Adaptive Neonatal Tissue Segmentation (MANTiS) tool. Group differences in absolute (mm, cm3) and normalized (%) data were analyzed using a univariate general linear model with age at scan as a covariate. Mean normalized values were assessed using one-way ANOVA. Results: Qualitative brain findings suggest brain atrophy in both full-term and pre-term patients. Both linear and volumetric MRI analyses confirmed significantly greater total CSF and extra-axial space, and decreased whole brain size in both full-term and pre-term patients compared to naïve controls. Although linear analysis suggests greater ventricular volumes in all patients, volumetric analysis showed that normalized ventricular volumes were higher only in premature patients compared to controls. Discussion: Linear brain metrics paralleled volumetric MRI analysis of total CSF and extra-axial space, but not ventricular size. Full-term infants appear to demonstrate similar brain vulnerability in the context of life-saving thoracic non-cardiac surgery requiring critical care as premature infants.

6.
Front Pediatr ; 5: 159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856131

RESUMO

Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

7.
Front Neurosci ; 11: 685, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311770

RESUMO

Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.

8.
Neuroimage ; 101: 625-32, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25038439

RESUMO

Gray matter atrophy has been shown to be a strong correlate to clinical disability in multiple sclerosis (MS) and its most commonly used animal model, experimental autoimmune encephalomyelitis (EAE). However, the relationship between gray mater atrophy and the spinal cord pathology often observed in EAE has never been established. Here EAE was induced in Thy1.1-YFP mice and their brains imaged using in vivo magnetic resonance imaging (MRI). The brains and spinal cords were subsequently optically cleared using Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY). Axons were followed 5mm longitudinally in three dimensions in intact spinal cords revealing that 61% of the axons exhibited a mean of 22 axonal ovoids and 8% of the axons terminating in axonal end bulbs. In the cerebral cortex, we observed a decrease in the mean number of layer V pyramidal neurons and a decrease in the mean length of the apical dendrites of the remaining neurons, compared to healthy controls. MRI analysis demonstrated decreased cortical volumes in EAE. Cross-modality correlations revealed a direct relationship between cortical volume loss and axonal end bulb number in the spinal cord, but not ovoid number. This is the first report of the use of CLARITY in an animal model of disease and the first report of the use of both CLARITY and MRI.


Assuntos
Córtex Cerebral/patologia , Encefalomielite Autoimune Experimental/patologia , Substância Cinzenta/patologia , Citometria de Varredura a Laser/métodos , Medula Espinal/patologia , Acrilamida , Animais , Atrofia/patologia , Córtex Cerebral/citologia , Modelos Animais de Doenças , Substância Cinzenta/citologia , Hidrogéis , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal , Medula Espinal/citologia
9.
J Neurosci ; 33(26): 10924-33, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804112

RESUMO

Estrogens can signal through either estrogen receptor α (ERα) or ß (ERß) to ameliorate experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of multiple sclerosis (MS). Cellular targets of estrogen-mediated neuroprotection are still being elucidated. Previously, we demonstrated that ERα on astrocytes, but not neurons, was critical for ERα ligand-mediated neuroprotection in EAE, including decreased T-cell and macrophage inflammation and decreased axonal loss. Here, we determined whether ERß on astrocytes or neurons could mediate neuroprotection in EAE, by selectively removing ERß from either of these cell types using Cre-loxP gene deletion. Our results demonstrated that, even though ERß ligand treatment was neuroprotective in EAE, this neuroprotection was not mediated through ERß on either astrocytes or neurons and did not involve a reduction in levels of CNS inflammation. Given the differential neuroprotective and anti-inflammatory effects mediated via ERα versus ERß on astrocytes, we looked for molecules within astrocytes that were affected by signaling through ERα, but not ERß. We found that ERα ligand treatment, but not ERß ligand treatment, decreased expression of the chemokines CCL2 and CCL7 by astrocytes in EAE. Together, our data show that neuroprotection in EAE mediated via ERß signaling does not require ERß on either astrocytes or neurons, whereas neuroprotection in EAE mediated via ERα signaling requires ERα on astrocytes and reduces astrocyte expression of proinflammatory chemokines. These findings reveal important cellular differences in the neuroprotective mechanisms of estrogen signaling through ERα and ERß in EAE.


Assuntos
Anti-Inflamatórios não Esteroides , Astrócitos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Transdução de Sinais/efeitos dos fármacos , Animais , Aquaporina 4/fisiologia , Axônios/fisiologia , Contagem de Células , Quimiocina CCL2/genética , Quimiocina CCL2/fisiologia , Quimiocina CCL7/genética , Quimiocina CCL7/fisiologia , Doenças Desmielinizantes/patologia , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...