Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953181

RESUMO

Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.


Assuntos
Dieta Hiperlipídica , Secreção de Insulina , Insulina , Neprilisina , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Enterócitos/metabolismo , Deleção de Genes , Teste de Tolerância a Glucose , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/genética , Neprilisina/metabolismo
2.
Peptides ; 168: 171076, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572792

RESUMO

Neprilysin is a peptidase that cleaves glucoregulatory peptides, including glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). Some studies suggest that its inhibition in diabetes and/or obesity improves glycemia, and that this is associated with enhanced insulin secretion, glucose tolerance and insulin sensitivity. Whether reduced neprilysin activity also improves hepatic glucose metabolism has not been explored. We sought to determine whether genetic deletion of neprilysin suppresses hepatic glucose production (HGP) in high fat-fed mice. Nep+/+ and Nep-/- mice were fed high fat diet for 16 weeks, and then underwent a pyruvate tolerance test (PTT) to assess hepatic gluconeogenesis. Since glycogen breakdown in liver can also yield glucose, we assessed liver glycogen content in fasted and fed mice. In Nep-/- mice, glucose excursion during the PTT was reduced when compared to Nep+/+ mice. Further, liver glycogen levels were significantly greater in fasted but not fed Nep-/- versus Nep+/+ mice. Since gut-derived factors modulate HGP, we tested whether gut-selective inhibition of neprilysin could recapitulate the suppression of hepatic gluconeogenesis observed with whole-body inhibition, and this was indeed the case. Finally, the gut-derived neprilysin substrates, GLP-1 and CCK, are well-known to suppress HGP. Having previously demonstrated elevated plasma GLP-1 levels in Nep-/- mice, we now measured plasma CCK bioactivity and reveal an increase in Nep-/- versus Nep+/+ mice, suggesting GLP-1 and/or CCK may play a role in reducing HGP under conditions of neprilysin deficiency. In sum, neprilysin modulates hepatic gluconeogenesis and strategies to inhibit its activity may reduce HGP in type 2 diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Gluconeogênese , Camundongos , Animais , Gluconeogênese/genética , Neprilisina , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Hepático/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Insulina/metabolismo , Glicemia/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 888867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733766

RESUMO

Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.


Assuntos
Antagonistas de Receptores de Angiotensina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Neprilisina , Aminobutiratos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Compostos de Bifenilo , Peso Corporal , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Camundongos , Camundongos Endogâmicos C57BL , Neprilisina/farmacologia , Receptores de Angiotensina , Tetrazóis/farmacologia , Valsartana/farmacologia
4.
Am J Physiol Endocrinol Metab ; 322(3): E307-E318, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128957

RESUMO

Type 2 diabetes is associated with the upregulation of neprilysin, a peptidase capable of cleaving glucoregulatory peptides such as glucagon-like peptide-1 (GLP-1). In humans, use of the neprilysin inhibitor sacubitril in combination with an angiotensin II receptor blocker was associated with increased plasma GLP-1 levels and improved glycemic control. Whether neprilysin inhibition per se is mediating these effects remains unknown. We sought to determine whether pharmacological neprilysin inhibition on its own confers beneficial effects on glycemic status and ß-cell function in a mouse model of reduced insulin secretion, and whether any such effects are dependent on GLP-1 receptor (GLP-1R) signaling. High-fat-fed male wild-type (Glp1r+/+) and GLP-1R knockout (Glp1r-/-) mice were treated with low-dose streptozotocin (STZ) to recapitulate type 2 diabetes-associated ß-cell dysfunction, or vehicle as control. Mice were continued on high-fat diet alone or supplemented with the neprilysin inhibitor sacubitril for 8 wk. At the end of the study period, ß-cell function was assessed by oral or intravenous glucose-tolerance test. Fasting and fed glucose were significantly lower in wild-type mice treated with sacubitril, although active GLP-1 levels and insulin secretion during oral glucose challenge were unchanged. In contrast, insulin secretion in response to intravenous glucose was significantly enhanced in sacubitril-treated wild-type mice, and this effect was blunted in Glp1r-/- mice. Similarly, sacubitril enhanced insulin secretion in vitro in islets from STZ-treated Glp1r+/+ but not Glp1r-/- mice. Together, our data suggest the insulinotropic effects of pharmacological neprilysin inhibition in a mouse model of ß-cell dysfunction are mediated via intra-islet GLP-1R signaling.NEW & NOTEWORTHY The neprilysin inhibitor, sacubitril, improves glycemic status in a mouse model of reduced insulin secretion. Sacubitril enhances intravenous but not oral glucose-mediated insulin secretion. The increased glucose-mediated insulin secretion is GLP-1 receptor-dependent. Neprilysin inhibition does not raise postprandial circulating active GLP-1 levels.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Secreção de Insulina , Neprilisina , Aminobutiratos , Animais , Compostos de Bifenilo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/antagonistas & inibidores , Neprilisina/metabolismo
5.
Exp Hematol ; 49: 34-38.e2, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28115200

RESUMO

Mantle cell lymphoma (MCL) affects approximately 4500 patients/year in the US and demonstrates a male to female ratio of approximately 4:1. While the pathobiology underlying this ratio is unknown, the hematopoietic system is characterized by sex-related differences in androgen receptor (AR) expression, leading us to hypothesize that the male-biased incidence of MCL may reflect sex-related differences in AR signaling during MCL lymphomagenesis. To explore the AR axis in MCL, we evaluated AR expression in MCL cell lines and human tumors, and tested the impact of androgen pathway inhibition on MCL proliferation. AR transcript levels ranged up to ~26 fold higher in MCL lines vs non-MCL NHL lines (p = 0.006) and were correlated with expression of the canonical AR-regulated gene, prostate-specific antigen (PSA; r = 0.715, p = 0.001), consistent with functional AR activity. Patient-derived MCL samples demonstrated a range of AR expression. Treatment of four different MCL lines with the potent AR antagonist enzalutamide demonstrated suppression of proliferation across both male and female-derived cell lines. These data suggest androgen-axis blockade may represent a novel therapeutic modality in MCL. This novel treatment approach is currently under investigation in a phase II clinical trial of AR inhibition in patients with relapsed/refractory MCL.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Proteínas de Neoplasias/biossíntese , Feniltioidantoína/análogos & derivados , Receptores Androgênicos/biossíntese , Benzamidas , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Nitrilas , Feniltioidantoína/farmacologia , Antígeno Prostático Específico/biossíntese , Fatores Sexuais
6.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L60-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515659

RESUMO

We have shown that febrile-range hyperthermia enhances lung injury and mortality in mice exposed to inhaled LPS and is associated with increased TNF-α receptor activity, suppression of NF-κB activity in vitro, and increased apoptosis of alveolar epithelial cells in vivo. We hypothesized that hyperthermia enhances lung injury and mortality in vivo by a mechanism dependent on TNF receptor signaling. To test this, we exposed mice lacking the TNF-receptor family members TNFR1/R2 or Fas (TNFR1/R2(-/-) and lpr) to inhaled LPS with or without febrile-range hyperthermia. For comparison, we studied mice lacking IL-1 receptor activity (IL-1R(-/-)) to determine the role of inflammation on the effect of hyperthermia in vivo. TNFR1/R2(-/-) and lpr mice were protected from augmented alveolar permeability and mortality associated with hyperthermia, whereas IL-1R(-/-) mice were susceptible to augmented alveolar permeability but protected from mortality associated with hyperthermia. Hyperthermia decreased pulmonary concentrations of TNF-α and keratinocyte-derived chemokine after LPS in C57BL/6 mice and did not affect pulmonary inflammation but enhanced circulating markers of oxidative injury and nitric oxide metabolites. The data suggest that hyperthermia enhances lung injury by a mechanism that requires death receptor activity and is not directly associated with changes in inflammation mediated by hyperthermia. In addition, hyperthermia appears to enhance mortality by generating a systemic inflammatory response and not by a mechanism directly associated with respiratory failure. Finally, we observed that exposure to febrile-range hyperthermia converts a modest, survivable model of lung injury into a fatal syndrome associated with oxidative and nitrosative stress, similar to the systemic inflammatory response syndrome.


Assuntos
Hipertermia Induzida , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Receptores de Morte Celular/metabolismo , Animais , Apoptose , Quimiocinas/biossíntese , Interleucina-1/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/complicações , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/complicações , Pneumonia/metabolismo , Pneumonia/patologia , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Análise de Sobrevida , Fator de Necrose Tumoral alfa/biossíntese , Receptor fas/metabolismo
7.
J Immunol ; 184(7): 3801-13, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20200273

RESUMO

Fever is common in critically ill patients and is associated with worse clinical outcomes, including increased intensive care unit mortality. In animal models, febrile-range hyperthermia (FRH) worsens acute lung injury, but the mechanisms by which this occurs remain uncertain. We hypothesized that FRH augments the response of the alveolar epithelium to TNF-alpha receptor family signaling. We found that FRH augmented LPS-induced lung injury and increased LPS-induced mortality in mice. At 24 h, animals exposed to hyperthermia and LPS had significant increases in alveolar permeability without changes in inflammatory cells in bronchoalveolar lavage fluid or lung tissue as compared with animals exposed to LPS alone. The increase in alveolar permeability was associated with an increase in alveolar epithelial apoptosis and was attenuated by caspase inhibition with zVAD.fmk. At 48 h, the animals exposed to hyperthermia and LPS had an enhanced lung inflammatory response. In murine lung epithelial cell lines (MLE-15, LA-4) and in primary type II alveolar epithelial cells, FRH enhanced apoptosis in response to TNF-alpha but not Fas ligand. The increase in apoptosis was caspase-8 dependent and associated with suppression of NF-kappaB activity. The FRH-associated NF-kappaB suppression was not associated with persistence of IkappaB-alpha, suggesting that FRH-mediated suppression of NF-kappaB occurs by means other than alteration of IkappaB-alpha kinetics. These data show for the first time that FRH promotes lung injury in part by increasing lung epithelial apoptosis. The enhanced apoptotic response might relate to FRH-mediated suppression of NF-kappaB activity in the alveolar epithelium with a resultant increase in susceptibility to TNF-alpha-mediated cell death.


Assuntos
Apoptose/fisiologia , Febre/fisiopatologia , Lesão Pulmonar/fisiopatologia , Alvéolos Pulmonares/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Células Epiteliais/patologia , Febre/imunologia , Citometria de Fluxo , Marcação In Situ das Extremidades Cortadas , Inflamação/imunologia , Inflamação/fisiopatologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Alvéolos Pulmonares/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Respir Cell Mol Biol ; 31(2): 162-70, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15059784

RESUMO

CD14 is important in the clearance of bacterial pathogens from lungs. However, the mechanisms that regulate the expression of membrane CD14 (mCD14) on alveolar macrophages (AM) have not been studied in detail. This study examines the regulation of mCD14 on AM exposed to Escherichia coli in vivo and in vitro, and explores the consequences of changes in mCD14 expression. The expression of mCD14 was decreased on AM exposed to E. coli in vivo and AM incubated with lipopolysaccharide (LPS) or E. coli in vitro. Polymyxin B abolished LPS effects, but only partially blocked the effects of E. coli. Blockade of extracellular signal-regulated kinase pathways attenuated LPS and E. coli-induced decrease in mCD14 expression. Inhibition of proteases abrogated the LPS-induced decrease in mCD14 expression on AM and the release of sCD14 into the supernatants, but did not affect the response to E. coli. The production of tumor necrosis factor-alpha in response to a second challenge with Staphylococcus aureus or zymosan was decreased in AM after incubation with E. coli but not LPS. These studies show that distinct mechanisms regulate the expression of mCD14 and the induction of endotoxin tolerance in AM, and suggest that AM function is impaired at sites of bacterial infection.


Assuntos
Endotoxinas/farmacologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos Alveolares/metabolismo , Animais , Infecções Bacterianas/metabolismo , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Feminino , Citometria de Fluxo , Macrófagos Alveolares/efeitos dos fármacos , Coelhos
9.
JAMA ; 287(17): 2228-35, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980523

RESUMO

CONTEXT: The pathogenesis of high-altitude pulmonary edema (HAPE) is considered an altered permeability of the alveolar-capillary barrier secondary to intense pulmonary vasoconstriction and high capillary pressure, but previous bronchoalveolar lavage (BAL) findings in well-established HAPE are also consistent with inflammatory etiologic characteristics. OBJECTIVES: To determine whether inflammation is a primary event in HAPE and to define the temporal sequence of events in HAPE. DESIGN, SETTING, AND PARTICIPANTS: Case study from July through August 1999 of 10 subjects with susceptibility to HAPE and 6 subjects resistant to HAPE, all of whom are nonprofessional alpinists with previous mountaineering experience above 3000 m. MAIN OUTCOME MEASURES: Pulmonary artery pressure measurements and BAL findings at low altitude (490 m) and shortly before or at the onset of HAPE at an altitude of 4559 m. RESULTS: Subjects who were HAPE susceptible had higher mean (SD) pulmonary artery systolic blood pressures at 4559 m compared with HAPE-resistant subjects (66 vs 37 mm Hg; P =.004). Despite development of HAPE in the majority of HAPE-susceptible subjects, there were no differences in BAL fluid total leukocyte counts between resistant and susceptible subjects or between counts taken at low and high altitudes. Subjects who developed HAPE had BAL fluid with high concentrations of plasma-derived proteins and erythrocytes, but there was no increase in plasma concentrations of surfactant protein A and Clara cell protein. The chest radiograph score was 12.7 for the 3 HAPE-susceptible subjects who developed HAPE before BAL was performed; they were lavaged within 3 to 5 hours. The remainder of the HAPE-susceptible group was lavaged before edema was apparent on radiographs. However, 6 subjects from the HAPE-susceptible group who developed HAPE on the following day had a score on bronchoscopy of 1.5, which increased to 4.6, reflective of mild pulmonary edema. In HAPE cases, there were no elevations in a number of proinflammatory cytokines and eicosanoid and nitric oxide metabolites. CONCLUSIONS: Early HAPE is characterized by high pulmonary artery pressures that lead to a protein-rich and mildly hemorrhagic edema, with normal levels of leukocytes, cytokines, and eicosanoids. HAPE is a form of hydrostatic pulmonary edema with altered alveolar-capillary permeability.


Assuntos
Doença da Altitude/complicações , Líquido da Lavagem Broncoalveolar , Artéria Pulmonar/fisiologia , Edema Pulmonar/etiologia , Adulto , Altitude , Doença da Altitude/imunologia , Gasometria , Pressão Sanguínea , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Broncoscopia , Citocinas/metabolismo , Ecocardiografia , Eicosanoides/metabolismo , Contagem de Eritrócitos , Feminino , Hemorragia , Humanos , Inflamação , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/imunologia , Radiografia , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...