Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36138746

RESUMO

Streptococcosis and aeromonasis inflicted by Streptococcus iniae and Aeromonas hydrophila, respectively, have affected tilapia industries worldwide. In this study, we investigated antibody responses and explored the mechanisms of protection rendered by an oral bivalent vaccine in red tilapia following challenges with S. iniae and A. hydrophila. The results of specific IgM antibody response revealed that the IgM titers against S. iniae and A. hydrophila in the bivalent incorporated (BI) vaccine group were significantly higher (p < 0.05) than those in the bivalent spray (BS) vaccine fish and unvaccinated control fish throughout the experiment. Real-time qPCR results also showed that the gene expression of CD4, MHC-I, MHC-II, IgT, C-type lysozyme, IL-1ß, TNF-α, and TGF-ß remained significantly higher (p < 0.05) than that of the controls between 24 and 72 h post-infection (hpi) in both mucosal (hindgut) and systemic (spleen and head−kidney) organs of BI vaccinated fish. Furthermore, the highest relative expression of the TGF-ß, C-type lysozyme, and IgT genes in the BI vaccinated group was observed in the challenged fish's spleen (8.8-fold), head kidney (4.4-fold), and hindgut (19.7-fold) tissues, respectively. The present study suggests that the bivalent incorporated (BI) vaccine could effectively improve the immune function and activate both humoral and cell-mediated immunities in vaccinated red tilapia following the bacterial challenges.

2.
Animals (Basel) ; 12(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35049757

RESUMO

Vibriosis is one of the most common threats to farmed grouper; thus, substantial efforts are underway to control the disease. This study presents an oral vaccination against multiple Vibrio spp. in a marine fish with double booster immunisation. The Vibrio harveyi strain VH1 vaccine candidate was selected from infected groupers Epinephelus sp. in a local farm and was formalin inactivated and combined with commercial feed at a 10% ratio (v/w). A laboratory vaccination trial was conducted for seventy days. The induction of IgM antibody responses in the serum of Asian seabass Lates calcarifer immunised with the oral Vibrio harveyi strain VH1 was significantly (p < 0.05) increased as early as week one post-primary vaccination. Subsequent administration of the first and second booster for 5 consecutive days, starting on days 14 and 42, respectively, improved the specific antibody level and reached a highly significant (p < 0.05) value at days 35 and 49 before slightly decreasing from day 56 onwards. Antibody titres of the control unvaccinated group remained relatively stable and low throughout the experimental period. At the end of the 70-day vaccination trial, 23 days post final boost, an intraperitoneal challenge with a field strain of Vibrio harveyi, V. alginolyticus, and V. parahaemolyticus was carried out. Our challenge study showed that oral Vibrio harveyi strain VH1 vaccine candidate could induce significant protection, with an RPS of 70-80% against different Vibrio species. Thereafter, a field trial was conducted in a mariculture farm to study the effect of field vaccination using the oral Vibrio harveyi strain VH1 vaccine candidate. A total of 3000 hybrid grouper juveniles were divided into two groups in triplicate. Fish of Group 1 were not vaccinated, while Group 2 were vaccinated with the feed-based vaccine. Vaccinations were carried out on days 0, 14, and 42 via feeding the fish with the vaccine at 4% body weight for 5 consecutive days. At the end of the study period, the fish survival rate was 80% for the vaccinated group, significantly (p < 0.05) higher than the 65% seen in the control unvaccinated group. Furthermore, the vaccinated fish showed significantly (p < 0.05) better growth performances. Therefore, the oral Vibrio vaccine from the inactivated Vibrio harveyi strain VH1 is a potential versatile vaccine candidate that could stimulate good immune responses and confer high protection in both Asian seabass, Lates calcarifer, and farm hybrid grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus.

3.
Biology (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34827185

RESUMO

The genus Aeromonas has been recognised as an important pathogenic species in aquaculture that causes motile Aeromonas septicaemia (MAS) or less severe, chronic infections. This study compares the pathogenicity of the different Aeromonas spp. that were previously isolated from freshwater fish with signs of MAS. A total of 124 isolates of Aeromonas spp. were initially screened for the ability to grow on M9 agar with myo-inositol as a sole carbon source, which is a discriminatory phenotype for the hypervirulent A. hydrophila (vAh) pathotype. Subsequently, LD50 of six selected Aeromonas spp. were determined by intraperitoneal injection of bacterial suspension containing 103, 105, and 107 CFU/mL of the respective Aeromonas sp. to red hybrid tilapias. The kidneys, livers and spleens of infected moribund fish were examined for histopathological changes. The screening revealed that only A. dhakensis 1P11S3 was able to grow using myo-inositol as a sole carbon source, and no vAh strains were identified. The LD50-240h of A. dhakensis 1P11S3 was 107 CFU/mL, while the non-myo-inositol utilizing A. dhakensis 4PS2 and A. hydrophila 8TK3 was lower at 105 CFU/mL. Similarly, tilapia challenged with the myo-inositol A. dhakensis 1P11S3 showed significantly (p < 0.05) less severe signs, gross and histopathological lesions, and a lower mortality rate than the non-myo-inositol A. dhakensis 4PS2 and A. hydrophila 8TK3. These findings suggested that myo-inositol utilizing A. dhakensis 1P11S3 was not a hypervirulent Aeromonas sp. under current experimental disease challenge conditions, and that diverse Aeromonas spp. are of concern in aquaculture farmed freshwater fish. Therefore, future study is warranted on genomic level to further elucidate the influence of myo-inositol utilizing ability on the pathogenesis of Aeromonas spp., since this ability correlates with hypervirulence in A. hydrophila strains.

4.
J Adv Vet Anim Res ; 8(1): 14-23, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33860008

RESUMO

OBJECTIVE: Present research aims to isolate, identify, and determine the virulence of the Streptococcus agalactiae (group B Streptococcus; GBS), isolated from popped eye disease affected Tilapia and Vietnamese Koi (V. Koi) fishes. MATERIALS AND METHODS: A total of 330 fish samples were collected, of which Tilapia (n = 180) and V. Koi (n = 150), were collected from 35 affected ponds of four selected districts of Bangladesh. Isolation of the bacterium was done using different culture media (Nutrient broth, Plate count agar, Tryptic Soy Agar, and Blood agar), and identification by using various biochemical tests (conventional and using API 20 Strep kit) and polymerase chain reaction (PCR) using primers against 16S rRNA gene of S. agalactiae. Antibiotic susceptibility of the bacteria was performed using seven different antibiotics disc (Tetracycline, Oxytetracycline, Chlortetracycline, Streptomycin, Ciprofloxacin, Gentamicin, and Neomycin). Virulence of the isolated S. agalactiae was determined by infecting healthy Tilapia and V. Koi fishes through experimental infection. RESULTS: Isolated bacteria were found Gram-positive paired and chained cocci, ß-hemolytic and non-motile. Findings of biochemical and serological tests indicate that the isolated bacterium belongs to Group B Streptococcus of Lancefield classification. PCR result also confirmed that the bacteria were S. agalactiae. The bacterial isolates possessed resistance property against all the seven antibiotics used in this study. The isolated GBS was found highly virulent and showed 80%-90% mortality for Tilapia and V. Koi fishes in experimental infection within 1-6 days of post-infection. CONCLUSION: From the findings of this study, it may be concluded that isolated GBS from the Tilapia and V. Koi fishes were highly virulent and possessed multidrug-resistance properties.

5.
Vaccines (Basel) ; 9(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920311

RESUMO

Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.

6.
Fish Shellfish Immunol ; 113: 162-175, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33857622

RESUMO

Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P < 0.05) higher systemic and mucosal IgM responses against both S. iniae and A. hydrophila and also cross-protective antigen S. agalactiae and A. veronii compared to the BS and control groups. Quantitative real-time PCR results also showed that the relative expressions of IL-8, INF-γ and IgM in the BI immunized fish spleen, head kidney and hindgut exhibited various significant (P < 0.05) rising trends following both the vaccination and the challenge phase. On weeks 10, all fish were challenged through the intraperitoneal route, where relative percent survivals (RPS) of 82.22 ± 3.85% when challenged with S. iniae, 77.78 ± 3.85% when challenged with A. hydrophila and 77.78 ± 3.85% when co-challenged with both S. iniae and A. hydrophila were observed in the BI group, which were significantly higher (P < 0.05) compared to the other groups. The BI group also showed significantly (P < 0.05) higher partial cross-protections following challenges with S. agalactiae (RPS at 60.00 ± 6.67%) and A. veronii (RPS at 57.78 ± 7.70%). This study demonstrated that immunization with feed-based BI vaccine elicited immune responses that were capable of protecting red hybrid tilapia against streptococcosis and MAS.


Assuntos
Vacinas Bacterianas/imunologia , Ciclídeos/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Vacinas Combinadas/imunologia , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/imunologia , Vacinas de Produtos Inativados/imunologia
7.
BMC Vet Res ; 16(1): 226, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615969

RESUMO

BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses. RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P < 0.05) increased on 21, 49 days post-vaccination and also 96 h post-infection, while erythrocytes, haemoglobin and haematocrit in vaccinated groups were significantly (P < 0.05) enhanced only 96 h post-infection. Additionally, the lysozyme and phagocytic activity and, serum antibody (IgM) were significantly higher (P < 0.05) against S. iniae and A. hydrophila in vaccinated groups compared to the unvaccinated group in the pre- and post-infection. Results from the challenge through co-infection with S. iniae and A. hydrophila showed the relative percent survival (RPS) in BF group was 76.67 ± 4.71%, which had the capacity to induce significant protection (P < 0.05) compared to others groups. CONCLUSIONS: This study demonstrates the bivalent formulate (BF) group could elicit significant non-specific and specific immunological responses with higher protection in hybrid red tilapia. In addition, this newly developed feed-based bivalent vaccination can be a promising technique for effective and large scale fish immunization in the aquaculture industry.


Assuntos
Vacinas Bacterianas/imunologia , Vacinas Bacterianas/normas , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções Estreptocócicas/veterinária , Tilápia/imunologia , Vacinação/veterinária , Aeromonas hydrophila , Ração Animal , Animais , Vacinas Bacterianas/administração & dosagem , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Streptococcus iniae , Tilápia/microbiologia , Vacinação/normas , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas Combinadas/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...