Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phycol ; 48(4): 940-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27009004

RESUMO

Trebouxiophytes of the genus Prasiola are well known in Antarctica, where they are among the most important primary producers. Although many aspects of their biology have been thoroughly investigated, the scarcity of molecular data has so far prevented an accurate assessment of their taxonomy and phylogenetic position. Using sequences of the chloroplast genes rbcL and psaB, we demonstrate the existence of three cryptic species that were previously confused under Prasiola crispa (Lightfoot) Kützing. Genuine P. crispa occurs in Antarctica; its presence was confirmed by comparison with the rbcL sequence of the type specimen (from the Isle of Skye, Scotland). Prasiola antarctica Kützing is resurrected as an independent species to designate algae with gross morphology identical to P. crispa but robustly placed in a separate lineage. The third species is represented by specimens identified as P. calophylla (Carmichael ex Greville) Kützing in previous studies, but clearly separated from European P. calophylla (type locality: Argyll, Scotland); this alga is described as P. glacialis sp. nov. The molecular data demonstrated the presence of P. crispa in Maritime and Continental Antarctica. P. antarctica was recorded from the Antarctic Peninsula and Shetland Islands, and P. glacialis from the Southern Ocean islands and coast. Such unexpected cryptic diversity highlights the need for a taxonomic reassessment of many published Antarctic records of P. crispa. The results also indicate that marine species of Prasiola form a well-supported monophyletic group, whereas the phylogenetic diversity of freshwater species is higher than previously suspected (at least three separate lineages within the genus include species living in this type of environments).

3.
Protist ; 161(1): 7-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19674931

RESUMO

DNA-barcoding is based on the premise that the divergence of a small DNA fragment coincides with biological separation of species. If true, it offers an additional tool for worldwide consistent species recognition even in cases of semi-cryptic species. Our study includes 618 sequences representing 114 diatom species belonging to the two most species-rich classes of diatoms (Mediophyceae and Bacillariophyceae). A 99.5% success rate in separating biologically defined species and a 91% success rate in separating all species tested was obtained when using the proposed barcode starting at the 5' end of 5.8S and ending in the conserved motif of helix III of ITS2 (300 to 400 bp). Including the whole 5.8S+ITS2 region did not significantly improve species resolution. We tested our barcode on 17 unidentified, misidentified or contaminated strains derived mostly from a culture collection, and these were correctly flagged as erroneous by their ITS sequences. We conclude that the proposed barcode represents for the Mediophyceae and Bacillariophyceae a robust, economical, and rapid way to recognize and identify most species (when a reference sequence is available) that is as good as or better than other molecular markers thus far proposed.


Assuntos
Biologia Computacional/métodos , Diatomáceas/classificação , Diatomáceas/genética , Análise por Conglomerados , DNA de Algas/química , DNA de Algas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA de Algas/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
4.
Mol Ecol Resour ; 9 Suppl s1: 65-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-21564966

RESUMO

The promise of DNA barcoding is based on a small DNA fragment divergence coinciding with biological species separation. Here we evaluated the performance of three markers as diatom barcodes, the small ribosomal subunit (1600 bp), a 5' end fragment of cytochrome c oxidase subunit 1 (430 bp), and the second internal transcribed spacer region combined with the 5.8S gene (5.8S + ITS-2, 300-400 bp). Forty-four sequences per marker representing 28 species from all diatom classes were analysed. Sequence alignment of the three genetic markers and uncorrected genetic distances (P) were calculated at the intra- and heterospecific level. All three markers correctly separated the species examined and had advantages which contribute to their feasibility as a DNA barcode. Small ribosomal subunit had the largest GenBank data set, its success rate in amplification and sequencing was assumed to be the highest of all three and was readily aligned. However, it required a long fragment to recover divergence sufficient for species separation and small genetic distances increased the potential for misidentifications. Cytochrome c oxidase subunit 1 demonstrated a substantial heterospecific divergence level and was also readily alignable, but it showed very low amplification and sequencing success rates with currently existing primers. 5.8S + ITS-2 was amplified and sequenced with high success rate and was the most variable of the three markers, but its secondary structure was needed to aid in alignment. However, since it has been recently suggested that ITS-2 may provide insight into sexual compatibility, this marker offers an additional advantage. We therefore propose that the 5.8S + ITS-2 fragment is the best candidate as a diatom DNA barcode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...