Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 223: 118997, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029698

RESUMO

The use of mathematical models is a well-established procedure in the field of (waste) water engineering to "virtually" evaluate the feasibility of novel process modifications. In this way, only options with the highest chance of success are further developed to be implemented at full-scale, while less interesting proposals can be disregarded at an early stage. Nevertheless, there is still lack of studies, where different plant-wide model predictions (effluent quality, process economics, and technical aspects) are comprehensibly verified in the field with full-scale data. In this work, a set of analysis/evaluation tools are used to assess alternative retrofitting options in the largest industrial wastewater treatment plant in Northern Europe. A mechanistic mathematical model is simulated to reproduce process behavior (deviation < 11%). Multiple criteria are defined and verified with plant data (deviation < 5%). The feasibility of three types of scenarios is tested: (1) stream refluxing, (2) change of operational conditions and (3) the implementation of new technologies. Experimental measurements and computer simulations show that the current plant´s main revenues are obtained from the electricity produced by the biogas engine (54%) and sales of the inactivated bio-solids for off-site biogas production (33%). The main expenditures are the discharge fee (39%), and transportation and handling of bio-solids (30%). Selective treatment of bio-solid streams strongly modifies the fate of COD and N compounds within the plant. In addition, it increases revenues (+3%), reduces cost (-9%) and liberates capacity in both activated sludge (+25%) and inactivation reactors (+50%). Better management of the buffer tank promotes heterotrophic denitrification instead of dissimilatory nitrate conversion to ammonia. In this way, 11% of the incoming nitrogen is removed within the anaerobic water line and does not overload the activated sludge reactors. Only a marginal increase in process performance is achieved when the anaerobic granular sludge reactor operates at full capacity. The latter reveals that influent biodegradability is the main limiting factor rather than volume. Usage of either NaOH or heat (instead of CaO) as inactivation agents allows anaerobic treatment of the reject water, which substantially benefits revenues derived from higher electricity recovery (+44%). However, there is a high toll paid on chemicals (+73%) or heat recovery (-19%) depending on the inactivation technology. In addition, partial nitration/Anammox and a better poly-aluminum chloride (PAC) dosage strategy is necessary to achieve acceptable (< 2%) N and P levels in the effluent. The scenarios are evaluated from a sustainability angle by using life cycle impact assessment (LCIA) in form of damage stressors grouped into three categories: human health, ecosystems quality, and resource scarcity. The presented decision support tool has been used by the biotech company involved in the study to support decision-making on how to handle future expansions.


Assuntos
Esgotos , Purificação da Água , Cloreto de Alumínio , Amônia , Anaerobiose , Biocombustíveis , Reatores Biológicos , Ecossistema , Humanos , Nitratos , Nitrogênio , Esgotos/química , Hidróxido de Sódio , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água , Purificação da Água/métodos
2.
J Environ Manage ; 293: 112806, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029977

RESUMO

Chemical conditioning prior to disposal is a common practice in biotech companies to stabilize the biological waste generated during production. Nevertheless, the state of the art models used to analyze management strategies in water treatment systems (WTS) do not include the effect of high alkaline conditions during bio-solids processing. In this paper, the prediction capabilities of a novel model-based approach describing the effect of quicklime addition (CaO) on the waste streams of an industrial WTS is assessed. Two measuring campaigns were carried out taking samples of TSS, VSS and total/soluble COD, N, P, S and multiple metals before and after chemical stabilization, and dewatering under and overflow. Mass balances were set up and Sankey diagrams were generated to represent the occurrence, transformation and fate of the major compounds within the studied facility. A simulation model was used to predict plant at different locations. Next, a scenario analysis was carried out in order to assess potential alternatives to the current operational practice. The resulting mass balances show a mismatch between the system's input and output up to 17%. It was also possible to identify different types of compound-behavior depending on the effect that high pH induced on the soluble and particulate fractions: hydrolysis, precipitation and unaltered. Model predictions and measurements differed 9.6% (steady state) and 12.4% (dynamic state) respectively. Finally, in the scenario analysis, the model suggested that the change from quicklime to sodium hydroxide (NaOH) would increase the quantity of organics in the dewatered cake (+23%), but with a considerable increase in chemical consumption (+50%). The selective stabilization of the incoming streams has the lowest use of chemicals (-30%) and reduces the load of CODsol (-13%) and TNsol (-14%) recirculated to the water line of the WWTP.


Assuntos
Resíduos Industriais , Purificação da Água , Hidrólise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
3.
Chem Res Toxicol ; 29(1): 40-6, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26633742

RESUMO

The photoreactivity of fenofibric acid (FA) in the presence of human and bovine serum albumins (HSA and BSA, respectively) has been investigated by steady-state irradiation, fluorescence, and laser flash photolysis (LFP). Spectroscopic measurements allowed for the determination of a 1:1 stoichiometry for the FA/SA complexes and pointed to a moderate binding of FA to the proteins; by contrast, the FA photoproducts were complexed more efficiently with SAs. Covalent photobinding to the protein, which is directly related to the photoallergic properties of the drug, was detected after long irradiation times and was found to be significantly higher in the case of BSA. Intermolecular FA-amino acid and FA-albumin irradiations resulted in the formation of photoproducts arising from coupling between both moieties, as indicated by mass spectrometric analysis. Mechanistic studies using model drug-amino acid linked systems indicated that the key photochemical step involved in photoallergy is formal hydrogen atom transfer from an amino acid residue to the excited benzophenone chromophore of FA or (more likely) its photoproducts. This results in the formation of caged radical pairs followed by C-C coupling to give covalent photoaducts.


Assuntos
Dermatite Fotoalérgica/metabolismo , Fenofibrato/análogos & derivados , Processos Fotoquímicos , Albumina Sérica/química , Animais , Bovinos , Fenofibrato/efeitos adversos , Fenofibrato/química , Fenofibrato/efeitos da radiação , Humanos , Lasers , Estrutura Molecular , Processos Fotoquímicos/efeitos da radiação , Albumina Sérica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...