Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(8): e3002224, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535687

RESUMO

Both the spindle microtubule-organizing centers and the nuclear pore complexes (NPCs) are convoluted structures where many signaling pathways converge to coordinate key events during cell division. Interestingly, despite their distinct molecular conformation and overall functions, these structures share common components and collaborate in the regulation of essential processes. We have established a new link between microtubule-organizing centers and nuclear pores in budding yeast by unveiling an interaction between the Bfa1/Bub2 complex, a mitotic exit inhibitor that localizes on the spindle pole bodies, and the Nup159 nucleoporin. Bfa1/Bub2 association with Nup159 is reduced in metaphase to not interfere with proper spindle positioning. However, their interaction is stimulated in anaphase and assists the Nup159-dependent autophagy pathway. The asymmetric localization of Bfa1/Bub2 during mitosis raises the possibility that its interaction with Nup159 could differentially promote Nup159-mediated autophagic processes, which might be relevant for the maintenance of the replicative lifespan.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Mitose/genética
2.
Elife ; 92020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135999

RESUMO

The microtubules that form the mitotic spindle originate from microtubule-organizing centers (MTOCs) located at either pole. After duplication, spindle MTOCs can be differentially inherited during asymmetric cell division in organisms ranging from yeast to humans. Problems with establishing predetermined spindle MTOC inheritance patterns during stem cell division have been associated with accelerated cellular aging and the development of both cancer and neurodegenerative disorders. Here, we expand the repertoire of functions Polo-like kinase family members fulfill in regulating pivotal cell cycle processes. We demonstrate that the Plk1 homolog Cdc5 acts as a molecular timer that facilitates the timely and sequential recruitment of two key determinants of spindle MTOCs distribution, that is the γ-tubulin complex receptor Spc72 and the protein Kar9, and establishes the fate of these structures, safeguarding their asymmetric inheritance during Saccharomyces cerevisiae mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Proteínas de Ciclo Celular/genética , Genes Fúngicos , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
3.
Cell Cycle ; 19(12): 1405-1421, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401610

RESUMO

The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.


Assuntos
Divisão Celular , Centro Organizador dos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Senescência Celular , Humanos , Transdução de Sinais
4.
Curr Genet ; 66(4): 719-727, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266430

RESUMO

Although cell division is usually portrayed as an equitable process by which a progenitor cell originates two identical daughter cells, there are multiple examples of asymmetric divisions that generate two cells that differ in their content, morphology and/or proliferative potential. The capacity of the cells to generate asymmetry during their division is of paramount biological relevance, playing essential roles during embryonic development, cellular regeneration and tissue morphogenesis. Problems with the proper establishment of asymmetry and polarity during cell division can give rise to cancer and neurodevelopmental disorders, as well as to also accelerate cellular aging. Interestingly, the microtubule organizing centers that orchestrate the formation of the mitotic spindle have been described among the cellular structures that can be differentially allocated during asymmetric cell divisions. This mini-review focuses on recent research from our group and others uncovering a role for the non-random distribution of the spindle-associated microtubule organizing centers in the differential distribution of aging factors during asymmetric mitoses and therefore in the maintenance of the replicative lifespan of the cells.


Assuntos
Divisão Celular Assimétrica , Doenças Neurodegenerativas/patologia , Polos do Fuso/fisiologia , Envelhecimento , Animais , Carcinogênese , Centrossomo , Feminino , Humanos , Masculino , Mitose , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Fuso Acromático , Células-Tronco/citologia , Células-Tronco/fisiologia
5.
Genes (Basel) ; 11(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059558

RESUMO

In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/genética , Dano ao DNA/efeitos da radiação , Mitose/genética , Mitose/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/genética , Quinase 1 Polo-Like
6.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973188

RESUMO

The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Autofagia , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citocinese/fisiologia , Replicação do DNA , DNA Ribossômico , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Mitose , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
7.
Nat Cell Biol ; 21(8): 952-965, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358968

RESUMO

The differential distribution of the microtubule-organizing centres (MTOCs) that orchestrate spindle formation during cell division is a fascinating phenomenon originally described in Saccharomyces cerevisiae and later found to be conserved during stem cell divisions in organisms ranging from Drosophila to humans. Whether predetermined MTOC inheritance patterns fulfil any biological function is however unknown. Using a genetically designed S. cerevisiae strain that displays a constitutively inverted MTOC fate, we demonstrate that the asymmetric segregation of these structures is critical to ensure normal levels of the Sir2 sirtuin and correct localization of the mitochondrial inheritance regulator Mfb1, and therefore to properly distribute functional mitochondria and protein aggregates between the mother and daughter cells. Consequently, interfering with this process severely accelerates cellular ageing.


Assuntos
Longevidade/fisiologia , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Replicação do DNA/fisiologia , Proteínas F-Box/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo
8.
Curr Biol ; 27(21): 3248-3263.e5, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29056450

RESUMO

The nucleolus plays a pivotal role in multiple key cellular processes. An illustrative example is the regulation of mitotic exit in Saccharomyces cerevisiae through the nucleolar sequestration of the Cdc14 phosphatase. The peculiar structure of the nucleolus, however, has also its drawbacks. The repetitive nature of the rDNA gives rise to cohesion-independent linkages whose resolution in budding yeast requires the Cdc14-dependent inhibition of rRNA transcription, which facilitates condensin accessibility to this locus. Thus, the rDNA condenses and segregates later than most other yeast genomic regions. Here, we show that defective function of a small nucleolar ribonucleoprotein particle (snoRNP) assembly factor facilitates condensin accessibility to the rDNA and induces nucleolar hyper-condensation. Interestingly, this increased compaction of the nucleolus interferes with the proper release of Cdc14 from this organelle. This observation provides an explanation for the delayed rDNA condensation in budding yeast, which is necessary to efficiently coordinate timely Cdc14 release and mitotic exit with nucleolar compaction and segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Ribossômico/genética , Região Organizadora do Nucléolo/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas do Citoesqueleto/metabolismo , DNA Fúngico/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Mitose/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Methods Mol Biol ; 1505: 3-17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826852

RESUMO

The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Transdução de Sinais , Ciclo Celular , Citocinese , Mitose , Saccharomyces cerevisiae/metabolismo
10.
Methods Mol Biol ; 1505: 35-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826854

RESUMO

The budding index and the morphology of the spindle and the nucleus are excellent markers for the analysis of the progression through the different stages of the cell cycle in Saccharomyces cerevisiae. Here, we describe a protocol to evaluate the budding index in this model organism using phase contrast microscopy. We also describe an indirect immunofluorescence method designed for the visualization of microtubules and the nucleus in S. cerevisiae. Finally, we explain how both methodologies can be used in order to analyze cell cycle progression in the budding yeast.


Assuntos
Imunofluorescência/métodos , Microscopia de Contraste de Fase/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/citologia , Tubulina (Proteína)/análise , Ciclo Celular , Microtúbulos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Fuso Acromático/ultraestrutura
12.
PLoS One ; 10(12): e0144972, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26661752

RESUMO

Aurora B and the spindle assembly checkpoint (SAC) collaborate to ensure the proper biorientation of chromosomes during mitosis. However, lack of Aurora B activity and inactivation of the SAC have a very different impact on chromosome segregation. This is most evident in Saccharomyces cerevisiae, since in this organism the lack of Aurora B is lethal and leads to severe aneuploidy problems, while the SAC is dispensable under normal growth conditions and mutants in this checkpoint do not show evident chromosome segregation defects. We demonstrate that the efficient repair of incorrect chromosome attachments by Aurora B during the initial stages of spindle assembly in budding yeast determines the lack of chromosome segregation defects in SAC mutants, and propose that the differential time window that Aurora B kinase requires to establish chromosome biorientation is the key factor that determines why some cells are more dependent on a functional SAC than others.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Aurora Quinases/metabolismo , Posicionamento Cromossômico , Segregação de Cromossomos , Pontos de Checagem da Fase M do Ciclo Celular , Microscopia de Fluorescência , Mitose , Saccharomyces cerevisiae/metabolismo
13.
Nucleic Acids Res ; 42(20): 12469-82, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300489

RESUMO

The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.


Assuntos
Adenosina Trifosfatases/fisiologia , Cromatina/química , Cromossomos Fúngicos/química , Proteínas de Ligação a DNA/fisiologia , Histonas/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular , Complexos Multiproteicos/fisiologia , Aurora Quinases/fisiologia , Centrômero/fisiologia , Segregação de Cromossomos , DNA Topoisomerases Tipo II/fisiologia , Metáfase , Nucleossomos/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular , Proteínas de Saccharomyces cerevisiae/fisiologia
14.
Proc Natl Acad Sci U S A ; 111(38): E3996-4005, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201961

RESUMO

Aurora B kinase regulates the proper biorientation of sister chromatids during mitosis. Lack of Aurora B kinase function results in the inability to correct erroneous kinetochore-microtubule attachments and gives rise to aneuploidy. Interestingly, increased Aurora B activity also leads to problems with chromosome segregation, and overexpression of this kinase has been observed in various types of cancer. However, little is known about the mechanisms by which an increase in Aurora B kinase activity can impair mitotic progression and cell viability. Here, using a yeast model, we demonstrate that increased Aurora B activity as a result of the overexpression of the Aurora B and inner centromere protein homologs triggers defects in chromosome segregation by promoting the continuous disruption of chromosome-microtubule attachments even when sister chromatids are correctly bioriented. This disruption leads to a constitutive activation of the spindle-assembly checkpoint, which therefore causes a lack of cytokinesis even though spindle elongation and chromosome segregation take place. Finally, we demonstrate that this increase in Aurora B activity causes premature collapse of the mitotic spindle by promoting instability of the spindle midzone.


Assuntos
Aurora Quinase B/metabolismo , Cromossomos Fúngicos/metabolismo , Cinetocoros/enzimologia , Microtúbulos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fuso Acromático/enzimologia , Aurora Quinase B/genética , Cromátides/enzimologia , Cromátides/genética , Cromossomos Fúngicos/genética , Microtúbulos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética
15.
PLoS Genet ; 9(10): e1003859, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130507

RESUMO

When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.


Assuntos
Dano ao DNA/genética , Mitose , Fosforilação/genética , Telômero/genética , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Proteínas do Citoesqueleto/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética
16.
J Biol Chem ; 287(22): 18717-29, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493290

RESUMO

Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.


Assuntos
Manganês/metabolismo , Mitose , Western Blotting , Ciclo Celular , Citometria de Fluxo , Instabilidade Genômica , Homeostase
17.
J Cell Biol ; 192(4): 599-614, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21321099

RESUMO

The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.


Assuntos
Mitose/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Deleção de Genes , Proteínas Monoméricas de Ligação ao GTP/análise , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fuso Acromático/ultraestrutura
18.
Cell Cycle ; 9(17): 3611-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20818155

RESUMO

Lrs4 and Csm1, components of the monopolin complex, localize to the rDNA where they regulate rDNA maintenance and segregation. During meiosis, the complex also associates with kinetochores to bring about sister kinetochore co-orientation, an essential aspect of meiosis I chromosome segregation. We show here that the Lrs4-Csm1 complex associates with kinetochores during mitosis. This kinetochore localization is observed during anaphase and depends on the on the Mitotic Exit Network, a signaling cascade essential for the completion of mitosis. Furthermore, we find that Lrs4 and Csm1 are important for chromosome segregation fidelity. Our results reveal a previously unanticipated function for Lrs4-Csm1 in mitotic chromosome segregation.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/análise , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Nucleares/análise , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
19.
Curr Biol ; 19(6): 449-60, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19268588

RESUMO

BACKGROUND: In budding yeast, the protein phosphatase Cdc14 coordinates late mitotic events and triggers exit from mitosis. During early anaphase, Cdc14 is activated by the FEAR network, but how signaling through the FEAR network occurs is poorly understood. RESULTS: We find that the FEAR network component Spo12 is phosphorylated on S118. This phosphorylation is essential for Spo12 function and is restricted to early anaphase, when the FEAR network is active. The anaphase-specific phosphorylation of Spo12 requires mitotic CDKs and depends on the FEAR network components Separase and Slk19. Furthermore, we find that CDC14 is required to maintain Spo12 in the dephosphorylated state prior to anaphase. CONCLUSIONS: Our results show that anaphase-specific phosphorylation of Spo12 is essential for FEAR network function and raise the interesting possibility that Cdc14 itself helps to prevent the FEAR network from being prematurely activated.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Anáfase/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Endopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Mutação , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Separase , Fuso Acromático/fisiologia
20.
Dev Cell ; 16(1): 132-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19154724

RESUMO

Components of the mitotic exit network (MEN), a signaling pathway that triggers exit from mitosis, localize to the spindle pole body (SPB) that migrates into the daughter cell during anaphase but are largely absent from the SPB that remains in the mother cell. Through the analysis of one of the determinants of this asymmetry, Bfa1, we find that the machinery responsible for establishing cell polarity and cytoplasmic microtubules collaborate to establish MEN asymmetry. In cells defective in the Cdc42 signaling pathway or the formin Bni1, Bfa1 localizes to both SPBs. The quantitative analysis of Bfa1 localization further shows that Bfa1 can associate with both SPBs in a transient and highly dynamic fashion, but the protein is stabilized on the SPB that migrates into the daughter cell during anaphase through microtubule-bud cortex interactions. Our results indicate that mother-daughter cell asymmetry determinants establish MEN signaling asymmetry through microtubule-bud cortex interactions.


Assuntos
Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...